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Abstract : Objectives : Malignant peripheral nerve sheath tumors (MPNSTs) are rare neoplasms requiring dif-
ferentiation from benign neurogenic tumors on diagnostic imaging. We evaluated the diagnostic utility of tex-
ture analysis (TA) in distinguishing seven pathologically confirmed MPNSTs from eight schwannomas using 
magnetic resonance imaging (MRI), including T1- (T1WI) and T2-weighted imaging (T2WI), and apparent diffu-
sion coefficient (ADC) maps. TA’s performance was compared with that of conventional approaches using ADC 
values alone. Methods : Tumors were segmented, and 90 texture features were extracted using LIFEx software. 
Significantly different features (p < 0.05) were identified using the Mann–Whitney U test and evaluated through 
receiver operating characteristic (ROC) analysis. ADC maps were used to measure the minimum, mean, and 
maximum ADC values, followed by ROC analysis. Results : Two T2WI-based texture features (neighborhood grey-
tone difference matrix Contrast and grey-level size zone matrix Grey Level Variance) demonstrated the highest 
diagnostic performance (area under the curve = 0.911 [95% confidence interval (CI) : 0.755–1.000]), comparable to 
the minimum and mean ADC values (area under the curve = 0.898 [95% CI : 0.691–1.000]). Conclusions : TA may 
help differentiate MPNSTs from schwannomas. T2WI-based TA offers a viable alternative when ADC maps are 
limited by magnetic susceptibility artifacts. J. Med. Invest. 72 : 367-374, August, 2025
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INTRODUCTION
 

Malignant peripheral nerve sheath tumors (MPNSTs) are 
rare neoplasms originating from Schwann cells, representing 
3–10% of all soft-tissue sarcomas (1, 2). In contrast, benign 
peripheral nerve sheath tumors (BPNSTs) are more prevalent, 
accounting for 10–12% of benign soft-tissue tumors (2, 3). Differ-
entiating between MPNSTs and BPNSTs is clinically important 
due to their markedly different prognoses. However, accurate 
diagnosis can be challenging sometimes due to overlapping clin-
ical and imaging features. Moreover, MPNSTs may arise from 
pre-existing BPNSTs, including benign schwannomas (4). 

While histopathological biopsy remains the diagnostic gold 
standard, it is associated with risks such as pain, nerve palsy, 
and potential malignant cell dissemination to visceral organs 
(5, 6). Consequently, non-invasive imaging plays a pivotal role in 
the diagnostic workup. One commonly used imaging technique 
involves assessing apparent diffusion coefficient (ADC) values 
on diffusion-weighted imaging (DWI). For example, Yun et al. 
demonstrated that mean and minimum ADC values could dis-
tinguish between benign and malignant PNSTs, with threshold 
values of 1.15×10-3 mm2/s (area under the curve [AUC] = 0.846 
[95% confidence interval (CI) : 0.715–977]) and 0.89×10-3 mm2/s 
(AUC = 0.759 [95% CI : 0.595–0.923]), respectively (3). However, 
given that PNSTs frequently arise in superficial or paraver-
tebral locations, DWI is susceptible to magnetic susceptibility 
artifacts, reducing its diagnostic reliability (7, 8). 

In recent years, texture analysis (TA) has emerged as a prom-
ising image-based technique to extract quantitative features 
that describe tumor heterogeneity, aiding in diagnosis and 
prognosis across various tumor types (9, 10). Despite its growing 
application, no prior study has specifically assessed the diagnos-
tic utility of TA derived from standard routinely acquired MRI 
sequences, including T1-weighted imaging (T1WI), T2-weighted 
imaging (T2WI), and ADC maps, in differentiating MPNSTs 
from BPNSTs. 

This retrospective study aimed to evaluate the diagnostic 
performance of TA applied to T1WI, T2WI, and ADC maps in 
differentiating MPNSTs from benign schwannomas represent-
ing BPNSTs. Additionally, we compare the diagnostic accuracy 
of TA with that of the conventional ADC value-based method.

PATIENTS AND METHODS
Patient Selection

This single-center retrospective study was approved by the 
local ethics committee (Approval number : 4376), with all pro-
cedures adhering to local data protection regulations and the 
Declaration of Helsinki. 

The inclusion criteria were : (1) a pathological diagnosis of 
MPNST or benign schwannoma based on biopsy or surgical 
specimens ; and (2) availability of pre-biopsy or pre-operative 
1.5T MRI examinations conducted between April 2013 and April 
2022 at our institution, including T1WI, T2WI, and ADC maps 
suitable for TA. 

The exclusion criteria were : (1) inadequate image quality due 
to low resolution or severe artifacts ; and (2) MRI performed 
after biopsy or more than 6 months prior to pathological diagno-
sis. No restrictions were placed on the patient’s age, tumor size, 
or clinical stage.
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MRI Data Acquisition
MRI was performed using a 1.5T system (Signa HDxt or 

Signa Explorer, GE Healthcare, USA). Acquisition parameters 
were as follows : (a) T1WI : sequence = fast spin echo (FSE) ; rep-
etition time (TR) /echo time (TE) = 391–625/7.3–26.9 ms ; field 
of view (FOV) = 120 × 120–350 × 350 mm ; matrix = 288 × 
192–388 × 388 ; slice thickness = 3–7 mm ; slice gap = 3.5–8 
mm ; pixel band width = 81–195 Hz/pixel ; acquisition time = 
1 min 48 s–2 min 37 s. (b) T2WI : sequence = FSE ; TR/TE = 
2913–5523/93.4–106 ms ; FOV = 120 × 120–350 × 350 mm ; ma-
trix = 288 × 192–320 × 320 ; slice thickness = 3–8 mm ; slice gap 
= 3.5–10 mm ; pixel band width = 81–244 Hz/pixel ; calculated 
chemical shift = 0.7–2.5 pixels ; acquisition time = 1 min 30 
s–3 min 4 s. (c) DWI : sequence = spin echo-echo planar imag-
ing ; TR/TE = 3315–7239/66.3–93.2 ms ; FOV = 200 × 200–400 
× 400 mm ; matrix = 84 × 84–128 × 160 ; slice thickness = 
3–6 mm ; slice gap = 3–6 mm ; pixel band width = 81–244 Hz/
pixel ; acquisition time = 1 min 39 s–3 min 47 s ; b-values = 0 and 
700 or 800 s/mm2.

Texture Feature Analysis 
Tumor segmentation and texture feature (TF) extraction 

were performed using LIFEx version 7.2.0 (IMIV/CEA, Orsay, 
France) (11). Two diagnostic radiologists (T.M., with 7 years of 
experience ; and T.S., with 24 years of experience), blinded to the 
diagnoses, independently delineated regions of interest (ROIs) 
slice-by-slice on T1WI, T2WI, and ADC maps to generate vol-
umes of interest (VOIs) as large as possible not including outer 
margin of the tumor to avoid partial volume effects and chemical 
shift artifacts. Final VOIs were determined by consensus (Fig. 
1). 

A total of 90 TFs were extracted from each VOI in accordance 
with the Image Biomarker Standardization Initiative guide-
lines (12). These included : morphological indices (12 features), 
intensity histogram parameters (23 features), grey-level co-oc-
currence matrix (GLCM : 23 features), neighborhood grey-tone 
difference matrix (NGTDM : 5 features), grey-level run-length 
matrix (GLRLM : 11 features), and grey-level size zone matrix 
(GLSZM : 16 features). 

TF calculation settings were : (1) spatial resampling to 2.0 × 
2.0 × 2.0 mm voxel size and (2) intensity discretization into 64 
grey levels between the minimum and maximum values within 
each VOI (13, 14).

Statistical Analysis
All statistical analyses were performed using EZR version 

1.61 (Saitama Medical Center, Jichi Medical University, Japan) 
(15). The Mann–Whitney U test was used to compare continuous 
variables that did not follow a normal distribution, whereas 
the Fisher’s exact test was used to compare categorical demo-
graphic variables. A p-value < 0.05 was considered statistically 
significant.

Receiver operating characteristic (ROC) curve analysis was 
conducted for all TFs showing significant differences, and the 
area under the curve (AUC) was calculated to assess diagnostic 
performance. As a secondary evaluation, the minimum, mean, 
and maximum ADC values were measured on the single slice 
where each tumor size reached the maximum. AUC values for 
ADC-derived parameters were computed using the same meth-
od and statistically compared with those of TFs using DeLong’s 
test (16).

RESULTS

A retrospective review of our institutional database identified 
17 patients who met the inclusion criteria. Of these, three were 
excluded due to a pathological diagnosis being made more than 6 
months after MRI acquisition. 

The final study cohort comprised 14 patients (4 males, 10 fe-
males) with a median age of 57 years (range : 18–81 years). One 
patient presented with two MPNSTs, resulting in a total of 15 
tumors : seven MPNSTs and eight benign schwannomas. The 
demographic characteristics of the cohort are summarized in 
Table 1. There was no significant difference in age, sex, and the 
median maximum tumor size between MPNSTs and schwanno-
mas (p = 0.463, 0.608, and 0.132, respectively).

As T2WI was available for all cases, TA was performed on all 
15 tumors. However, T1WI was unavailable in one case each of  
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Fig 1.　Example images of segmentation for MPNST in the upper limb (a) and schwannoma in the paraspinal space (b). Two diagnostic 
radiologists independently delineated the regions of interest (ROIs) slice-by-slice on T2-weighted imaging (T2WI), T1-weighted imaging 
(T1WI), and apparent diffusion coefficient (ADC) maps to generate the volume of interest (VOI).
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MPNST and schwannoma, reducing the T1WI-based TA dataset 
to 13 tumors. ADC maps were unavailable in one schwannoma 
case, resulting in 14 tumors for ADC map-based TA. 

The Mann–Whitney U test was applied to the 90 TFs ex-
tracted from T1WI, T2WI, and ADC maps. The number of TFs 
showing statistically significant differences (p < 0.05) between 
MPNSTs and benign schwannomas varied by sequence : 38 for 
T2WI, 23 for ADC maps, and 1 for T1WI (Table 2). A comprehen-
sive list of significant TFs is provided in the Supplemental Table. 

ROC curve analysis was performed for each TF with signif-
icant group-wise differences. To streamline reporting, an AUC 

threshold of 0.87 was used to define high diagnostic accuracy. 
Table 3 lists the TFs with AUC values exceeding this threshold. 
The highest AUCs were observed for T2WI NGTDM Contrast and 
T2WI GZSZM Grey Level Variance, both achieving an AUC of 0.911 
(95% CI : 0.755–1.000).

Among the ADC-derived parameters measured at the single 
slice where each tumor size reached the maximum, the minimum 
and mean ADC values showed statistically significant differenc-
es between MPNSTs and schwannomas, with AUCs of 0.898 for 
both (95% CI : 0.691–1.000). In contrast, maximum ADC values 
did not demonstrate significant differences (Table 4). 

Table 1.　Demographic and clinical characteristics of the study 
population

MPNST Schwannoma p-value

Tumor 7 8

Patient (underlying NF-1) 6 (5) 8 (1)

Median age (years) (range) 53 (18–81) 58 (33–76) 0.463

Sex (male, female) 2, 4 2, 6 0.608

Median maximum tumor
size (mm) (range) 59 (26–70) 25 (15–152) 0.132

Table 2.　Number of texture features showing significant differences 
between MPNST and benign schwannoma by feature type

T2WI ADC map T1WI

Morphological indices None None None

Intensity-Histogram parameters 11 11 1

GLCM 17 7 None

NGTDM 2 1 None

GLRLM 3 3 None

GLSZM 5 1 None

Total 38 23 1

Table 3.　Texture features with AUC > 0.87 and their corresponding AUC values

T2WI Features AUC 95% CI

Intensity-Histogram Variance 0.875 0.688–1.000

Mean Absolute Deviation 0.875 0.688–1.000

Median Absolute Deviation 0.875 0.688–1.000

GLCM Joint Variance 0.875 0.688–1.000

Difference Average 0.875 0.660–1.000

Dissimilarity 0.875 0.660–1.000

Inverse Difference 0.875 0.660–1.000

Normalized Inverse Difference 0.875 0.660–1.000

Inverse Difference Moment 0.875 0.660–1.000

NGTDM Contrast 0.911 0.755–1.000

GLSZM Grey Level Variance 0.911 0.755–1.000

ADC maps Features AUC 95% CI

Intensity-Histogram 90th Percentile 0.888 0.695–1.000

Uniformity 0.878 0.634–1.000

GLCM Joint Average 0.878 0.696–1.000

Sum Average 0.878 0.696–1.000

Autocorrelation 0.878 0.696–1.000

GLRLM Short Run High Grey Level Emphasis 0.878 0.686–1.000

Table 4.　Comparison of ADC values between MPNST and benign schwannoma

MPNST Schwannoma

ADC values Median (range)
(×10-3mm2 / s)

Median (range)
(×10-3mm2 / s)

p-value AUC 95% CI

Minimum 0.94 (0.55–1.20) 1.47 (0.91–1.93) 0.0147 0.898 0.691–1.000

Mean 1.51 (1.23–2.11) 1.95 (1.78–2.40) 0.0111 0.898 0.691–1.000

Maximum 2.09 (1.58–2.96) 2.45 (2.26–2.85) 0.259 0.694 0.371–1.000
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Comparative ROC analysis using DeLong’s test revealed no 
statistically significant differences between the two ADC-de-
rived parameters (minimum and mean ADC values) and the two 
top-performing TFs (T2WI NGTDM Contrast and T2WI GZSZM Grey 
Level Variance) (Fig. 2). 

DISCUSSION

This study demonstrates that several TFs extracted from 
T2WI and ADC maps achieve high diagnostic accuracy in 
distinguishing MPNSTs from benign schwannomas. Among 
these, T2WI NGTDM Contrast and T2WI GZSZM Grey Level Variance 
showed the highest diagnostic performance (AUC = 0.911 [95% 
CI : 0.755–1.000]). 

Both minimum and mean ADC values also differed sig-
nificantly between MPNSTs and benign schwannomas, each 
achieving an AUC of 0.898 (95% CI : 0.691–1.000). Notably, 
DeLong’s test revealed no statistically significant difference in 
diagnostic accuracy between these ADC parameters and the 
top-performing TFs.

TA is a quantitative imaging technique that uses mathemat-
ical descriptors to evaluate image heterogeneity and spatial sig-
nal distribution. It can extract information not readily apparent 
to visual inspection, and has been reported to be potentially 
relevant to the clinical outcome and pathological characteristics 
(17). One key application of TA is the non-invasive differentiation 
between benign and malignant lesions.

A basic component of TA is intensity histogram analysis, 
which assesses variability and bias in pixel or voxel intensity dis-
tribution by dividing values into discrete bins (18). Parameters 
like kurtosis and skewness derived from these histograms assist 
in tumor characterization (19). In this study, TFs that measure 
signal variability — such as variance and uniformity — achieved 
high AUC values (Table 3). MPNSTs demonstrated lower signal 
variability than benign schwannomas (Supplemental Table), 
consistent with histopathological differences : MPNSTs are 
densely cellular, while schwannomas exhibit a heterogeneous 
mix of hypercellular Antoni A and hypocellular Antoni B regions 
(20). This supports the idea that TA may reflect the underlying 
tissue pathological architecture, and serve as a potential non-in-
vasive tool for differentiating benign and malignant neurogenic 

Fig 2.　Comparison of receiver operating characteristic (ROC) curves for apparent diffusion coefficient (ADC) values and texture 
features : (a) mean ADC values vs. T2WI GLSZM Grey Level Variance, (b) minimum ADC values vs. T2WI GLSZM Grey Level Variance, 
(c) mean ADC values vs. T2WI NGTDM Contrast, and (d) minimum ADC values vs. T2WI NGTDM Contrast. DeLong’s test showed no 
statistically significant differences between the ROC curves for any of the paired parameters (all p > 0.05).
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tumors. However, literature on TA does not provide clear evi-
dence that supports the above hypothesis intertwining pathology 
and MRI on PNSTs.

A percentile in histogram analysis represents the intensity 
value below which a given percentage of the data falls. For in-
stance, if the 90th percentile is κ, then 90% of the distribution 
lies below κ. Thus, a reduced ADC histogram 90th percentile under 
the condition of discretized signal intensity suggests that most 
internal signals fall within a lower ADC value range when ADC 
value ranges are comparable in extent, and the measured mini-
mum, mean, and maximum ADC values are lower. Our results 
demonstrated that the ADC intensity histogram 90th percentile was 
lower in the malignant group (Supplemental Table), consistent 
with findings from previous studies (21, 22). This may indicate 
that malignant tumors tend to have lower ADC values and/or 
exhibit more homogeneous distributions on ADC maps.

When most intensity values cluster within a single bin in 
a histogram, the uniformity parameter approaches 1 (11). In 
our study, ADC intensity histogram uniformity was closer to 1 in 
MPNSTs than in benign schwannomas (Supplemental Table). 
Variance, a measure of signal variability, is calculated as the 
mean of squared deviations from the average value. In our study, 
T2WI intensity histogram variance was lower in MPNSTs than in 
benign schwannomas (Supplemental Table). These findings 
suggest that MPNSTs exhibit more homogeneous intensity dis-
tributions on MRI than schwannomas.

GLCM, NGTDM, GLRLM, and GLSZM are advanced tex-
tural parameters that assess pixel/voxel intensity distributions 
within an image. GLCM quantifies the frequency of specific 
grey-level combinations in adjacent pixels or voxels. GLRLM 
evaluates grey-level continuity within image stacks, differing 
from GLCM by analyzing run lengths rather than co-occur-
rence. GLSZM measures the number of connected pixel/voxel 
clusters with the same grey level. NGTDM calculates the sum 
of grey-level differences between a pixel/voxel and its neighbor-
ing pixels/voxels within a defined Chebyshev distance (12). In 
this study, several TFs derived from these advanced textural 
parameters exhibited significant differences between benign 
schwannomas and MPNSTs. Specifically, T2WI GLCM Dissimi-
larity and T2WI GLCM Difference Average were lower in MPNSTs 
than in benign schwannomas (Supplemental Table). Dissimilar-
ity and difference average values tend to be lower in uniformly 
textured lesions (23). Therefore, these findings further suggest 
that MPNSTs have a more homogeneous signal distribution. 
This trend aligns with the findings of Ristow et al., who report-
ed similar results in their study of neurogenic tumors using 
T2-weighted turbo spin-echo sequences with fat suppression 
(spectral attenuated inversion recovery, SPAIR) (10). 

Conversely, Qin et al. examined the correlation between TFs 
and glioma grading and found that ADC GLCM Sum Average — 
representing the frequency of specific pixel/voxel pairs with de-
fined spatial relationships — tended to be higher in higher-grade 
gliomas (24). In contrast, our study found that the ADC GLCM 
Sum Average was lower in MPNSTs. This discrepancy suggests 
that, while gliomas exhibit increased heterogeneity with ma-
lignancy, peripheral neurogenic tumors may display greater 
homogeneity in their malignant forms. These findings, along 
with previous studies, indicate that TF values alone may not 
universally distinguish benign from malignant tumors across 
all tumor types, as their diagnostic significance varies depend-
ing on tumor origin.

T2WI NGTDM Contrast and T2WI GLSZM Grey Level Variance had 
the highest AUC values in our study (each AUC = 0.911 [95% 
CI : 0.755–1]). The cut-off values were 0.262 for T2WI NGTDM 
Contrast (sensitivity = 1.00, specificity = 0.75) and 125.4 for T2WI 
GLSZM Grey Level Variance (sensitivity = 1.00, specificity = 0.75). 

NGTDM Contrast depends on the dynamic range of grey levels 
and the spatial frequency of signal variations (25), while GLSZM 
Grey Level Variance measures the variability of zone counts per 
grey level (12). In the present study, both features had lower 
values in MPNSTs (Supplemental Table), further supporting the 
notion that MPNSTs exhibit greater homogeneity than benign 
schwannomas. Notably, there are other types of MPNSTs be-
sides the classic ones, such as the rhabdomyoblastic, epithelioid, 
and glandular types and others (26) ; however, the MPNST in 
our study did not have any pathological features similar to those 
of these rare subtypes. According to the proportion of these atyp-
ical subtypes in study populations, texture analyses may have 
different diagnostic capacities in discriminating between benign 
and malignant neurogenic tumors.

In addition to TA, our analysis of ADC values for differenti-
ating MPNSTs from schwannomas showed that both minimum 
and mean ADC values differed significantly between benign and 
malignant tumors, with high diagnostic accuracy (AUC = 0.898 
for both [95% CI : 0.691–1.000]). The optimal cut-off values were 
1.13× 10-3 mm2/s for minimum ADC (sensitivity = 0.86, speci-
ficity = 0.86) and 1.78 × 10-3 mm2/s for mean ADC (sensitivity 
= 0.86, specificity = 0.86). ADC measurement is a conventional 
and straightforward technique for distinguishing malignant 
from benign tumors. Notably, Yun et al. reported that mean and 
minimum ADC values are effective in differentiating benign 
and malignant PNSTs (3). These findings reinforce the utility of 
ADC maps as a valuable tool in distinguishing MPNSTs from 
schwannomas.

Furthermore, TA based on T2WI and ADC maps proved 
useful in differentiating MPNSTs from benign schwannomas on 
MRI. However, TA did not demonstrate a significant advantage 
over conventional methods relying solely on ADC values.

PNSTs are often located in subcutaneous or paravertebral 
regions, where DWI may be affected by artifacts. T2WI gener-
ally offers superior artifact resistance and higher image quality 
compared to DWI (27). In clinical practice, DWI or ADC maps 
may not always be feasible due to patient-related factors such 
as claustrophobia or motion artifacts. Given that T2WI is often 
included in standard MRI protocols, it may provide more de-
tailed anatomical information in addition to offering comparable 
diagnostic performance to DWI-based TA. Therefore, TA based 
on T2WI is considered versatile and clinically valuable among 
the MRI sequences evaluated in this study. Because we studied 
T2WI without fat suppression, the chemical shift effect must 
be considered. The calculated shift in this study was ranged 
from approximately 0.7 to 2.7 pixels for our 1.5T equipment and 
outer margins of the tumor are not included in each ROIs (VOIs) 
which would not have a severe influence on the results. However, 
at higher magnetic field strengths, more attention should be paid 
to the chemical shift effect.

T1WI-based TA demonstrated fewer significant differences, 
and its AUC values were generally lower than those obtained 
from T2WI and ADC maps. This finding is expected, as visual 
tumor inhomogeneity is more apparent on T2WI and ADC maps 
than on T1WI. Consequently, when discriminating malignant 
from benign PNSTs, T1WI has a lower diagnostic priority than 
T2WI and ADC maps, particularly in cases where MRI exam-
ination time is limited.

This study has some limitations. First, the relatively small 
sample size — driven by the requirement for definitive patholog-
ical confirmation — limits the generalizability of our findings. 
One particular concern is that the MPNSTs in our study were 
relatively smaller than generally reported. Wasa et al. reported 
a median maximum tumor size of 9.9 cm among 41 MPNSTs 
(5), whereas in our study, it was 5.9 cm. There might be a bias, 
given that larger tumors are more likely to have necrosis and can 
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increase signal heterogeneity. In addition, as mentioned earlier, 
there are some histopathological variants in MPNST, and we 
have been unable to perform advanced analysis based on such 
tumor subtypes. Therefore, future validation in larger cohorts is 
required. Second, we referred to previous reports on TA in MR 
imaging to determine analysis settings ; however, optimal ROI 
and VOI settings for TA have not been fully standardized. Third, 
reproducibility may be limited, as ROI and VOI delineation 
were performed manually. Future studies should include larger 
prospective cohorts and employ automated, computer-aided 
methods for ROI and VOI segmentation to enhance consistency 
and reproducibility.

In conclusion, TA demonstrated utility in distinguishing 
malignant from benign neurogenic tumors in this retrospective 
study of pathologically diagnosed schwannomas and MPNSTs. 
However, no significant difference was found between TA and 
conventional ADC value-based methods, indicating that TA 
offers comparable diagnostic performance to ADC values. Ad-
ditionally, TA based on T2WI proved to be a versatile tool 
for differentiating neurogenic tumors, particularly given that 
these tumors commonly arise in body surface or paravertebral 
regions, where T2WI is less susceptible to magnetic suscepti-
bility artifacts than DWI. Furthermore, our findings highlight 
that MPNSTs exhibited lower signal variability than benign 
schwannomas, reinforcing the potential role of TA in quantify-
ing tumor heterogeneity and contributing to non-invasive tumor 
characterization.
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Supplemental Table

Texture feature
Median

p-value AUC 95% CI
MPNST Schwannoma

T2WI

Intensity histogram

Variance 68.20945622 155.5479137 0.014 0.875 0.688–1.000

Kurtosis 0.528322485 -0.290294287 0.0289 0.839 0.613–1.000

90th Percentile 41 49 0.0314 0.839 0.634–1.000

Interquartile Range 11 17.5 0.0314 0.839 0.615–1.000

Mean Absolute Deviation 6.462239479 10.18849474 0.014 0.875 0.688–1.000

Robust Mean Absolute Deviation 4.656909839 7.571765001 0.0205 0.857 0.688–1.000

Median Absolute Deviation 6.462064444 10.06782864 0.014 0.875 0.688–1.000

Coefficient Of Variation 0.288631358 0.363952139 0.0401 0.821 0.598–1.000

Quartile Coefficient of Dispersion 0.193548387 0.251759834 0.0239 0.857 0.649–1.000

Entropy Log2 5.068672424 5.550036382 0.0205 0.857 0.649–1.000

Uniformity 0.035657851 0.025166488 0.0205 0.857 0.649–1.000

GLCM

Joint Maximum 0.007167045 0.004619272 0.0289 0.839 0.626–1.000

Joint Variance 61.7751959 137.1519079 0.014 0.875 0.688–1.000

Joint Entropy Log2 9.454281947 10.13201913 0.0401 0.821 0.598–1.000

Difference Average 5.28254886 7.678845932 0.014 0.875 0.660–1.000

Difference Variance 23.19658687 51.99882234 0.0205 0.857 0.649–1.000

Difference Entropy 9.454281947 10.13201913 0.0401 0.821 0.598–1.000

Sum Variance 204.495719 422.7065395 0.0205 0.857 0.649–1.000

Sum Entropy 9.454281947 10.13201913 0.0401 0.821 0.598–1.000

Angular Second Moment 0.002313776 0.001212564 0.0401 0.821 0.598–1.000

Contrast 54.44649643 111.0484525 0.0205 0.857 0.636–1.000

Dissimilarity 5.28254886 7.678845932 0.014 0.875 0.660–1.000

Inverse Difference 0.29655479 0.224887553 0.014 0.875 0.660–1.000

Normalized Inverse Difference 0.928831177 0.900788344 0.014 0.875 0.660–1.000

Inverse Difference Moment 0.208624886 0.137477049 0.014 0.875 0.660–1.000

Normalized Inverse Difference Moment 0.987428526 0.975826934 0.0205 0.857 0.636–1.000

Cluster Tendency 204.495719 422.7065395 0.0205 0.857 0.649–1.000

Cluster Prominence 143097.5491 595094.8606 0.0205 0.857 0.663–1.000

NGTDM

Contrast 0.163572275 0.449702212 0.00591 0.911 0.755–1.000

Complexity 4973.513493 7950.451186 0.0289 0.839 0.613–1.000
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Texture feature
Median

p-value AUC 95% CI
MPNST Schwannoma

GLRLM

Short Runs Emphasis 0.949130872 0.973738638 0.0401 0.821 0.564–1.000

Long Runs Emphasis 1.250797679 1.113846629 0.0401 0.821 0.564–1.000

Run Percentage 0.930228612 0.964970443 0.0401 0.821 0.564–1.000

GLSZM

Large Zone Emphasis 46.65958284 4.468649302 0.0289 0.839 0.590–1.000

Normalized Grey Level Non-Uniformity 0.030059663 0.022759413 0.0205 0.857 0.649–1.000

Zone Percentage 0.400409707 0.623638382 0.0401 0.821 0.564–1.000

Grey Level Variance 93.75421039 156.9999012 0.00591 0.911 0.755–1.000

Zone Size Variance 40.42236654 1.89443391 0.0205 0.857 0.612–1.000

ADC map

Intensity histogram

Mean 26.49245331 35.47975078 0.0262 0.857 0.654–1.000

Variance 72.75544318 133.1513099 0.0379 0.837 0.586–1.000

Skewness 0.478205122 -0.470695151 0.0379 0.837 0.586–1.000

Median 26 37 0.0346 0.847 0.638–1.000

90th Percentile 39 50 0.018 0.888 0.695–1.000

Interquartile Range 10 15 0.0342 0.847 0.601–1.000

Mean Absolute Deviation 5.799962972 9.090185867 0.0262 0.857 0.613–1.000

Robust Mean Absolute Deviation 4.053969359 6.608423483 0.0379 0.837 0.586–1.000

Median Absolute Deviation 5.713497823 9.037610619 0.0262 0.857 0.613–1.000

Entropy Log2 4.861029987 5.366512212 0.0262 0.857 0.613–1.000

Uniformity 0.041969157 0.03058006 0.0175 0.878 0.634–1.000

GLCM

Joint Average 26.09768763 37.63613614 0.0175 0.878 0.696–1.000

Joint Variance 56.0670121 120.0668191 0.0262 0.857 0.613–1.000

Sum Average 52.19537525 75.27227227 0.0175 0.878 0.696–1.000

Sum Variance 195.3480086 355.1661851 0.0262 0.857 0.613–1.000

Angular Second Moment 0.003711337 0.001750221 0.0262 0.857 0.637–1.000

Autocorrelation 722.6962916 1455.914248 0.0175 0.878 0.696–1.000

Cluster Tendency 195.3480086 355.1661851 0.0262 0.857 0.613–1.000

NGTDM

Complexity 3607.830752 7116.319279 0.0379 0.847 0.586–1.000

GLRLM

High Grey Level Run Emphasis 795.9334807 1399.096269 0.0262 0.857 0.654–1.000

Short Run High Grey Level Emphasis 745.02301 1360.032472 0.0175 0.878 0.686–1.000

Long Run High Grey Level Emphasis 1078.95118 1577.467712 0.0379 0.837 0.601–1.000

GLSZM

High Gray Level Zone Emphasis 1061.632921 1309.858447 0.0379 0.837 0.601–1.000

T1WI

Intensity histogram

Quartile Coefficient of Dispersion 0.156402737 0.214285714 0.0452 0.845 0.601–1.000


