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Abstract : Objectives : Malignant peripheral nerve sheath tumors (MPNSTSs) are rare neoplasms requiring dif-
ferentiation from benign neurogenic tumors on diagnostic imaging. We evaluated the diagnostic utility of tex-
ture analysis (TA) in distinguishing seven pathologically confirmed MPNSTSs from eight schwannomas using
magnetic resonance imaging (MRI), including T1- (T1WI) and T2-weighted imaging (T2WI), and apparent diffu-
sion coefficient (ADC) maps. TA’s performance was compared with that of conventional approaches using ADC
values alone. Methods : Tumors were segmented, and 90 texture features were extracted using LIFEx software.
Significantly different features (p < 0.05) were identified using the Mann-Whitney U test and evaluated through
receiver operating characteristic (ROC) analysis. ADC maps were used to measure the minimum, mean, and
maximum ADC values, followed by ROC analysis. Results : Two T2WI-based texture features (neighborhood grey-
tone difference matrix Contrast and grey-level size zone matrix Grey Level Variance) demonstrated the highest
diagnostic performance (area under the curve = 0.911 [95% confidence interval (CI) : 0.755-1.000]), comparable to
the minimum and mean ADC values (area under the curve = 0.898 [95% CI:0.691-1.000]). Conclusions : TA may
help differentiate MPNSTSs from schwannomas. T2WI-based TA offers a viable alternative when ADC maps are
limited by magnetic susceptibility artifacts. J. Med. Invest. 72:367-374, August, 2025
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INTRODUCTION

Malignant peripheral nerve sheath tumors (MPNSTSs) are
rare neoplasms originating from Schwann cells, representing
3—-10% of all soft-tissue sarcomas (1, 2). In contrast, benign
peripheral nerve sheath tumors (BPNSTSs) are more prevalent,
accounting for 10—-12% of benign soft-tissue tumors (2, 3). Differ-
entiating between MPNSTs and BPNSTs is clinically important
due to their markedly different prognoses. However, accurate
diagnosis can be challenging sometimes due to overlapping clin-
ical and imaging features. Moreover, MPNSTs may arise from
pre-existing BPNSTSs, including benign schwannomas (4).

While histopathological biopsy remains the diagnostic gold
standard, it is associated with risks such as pain, nerve palsy,
and potential malignant cell dissemination to visceral organs
(5, 6). Consequently, non-invasive imaging plays a pivotal role in
the diagnostic workup. One commonly used imaging technique
involves assessing apparent diffusion coefficient (ADC) values
on diffusion-weighted imaging (DWI). For example, Yun et al.
demonstrated that mean and minimum ADC values could dis-
tinguish between benign and malignant PNSTs, with threshold
values of 1.15x10® mm?/s (area under the curve [AUC] = 0.846
[95% confidence interval (CI) : 0.715-977]) and 0.89%10”® mm?/s
(AUC =0.759 [95% CI : 0.595-0.923)), respectively (3). However,
given that PNSTs frequently arise in superficial or paraver-
tebral locations, DWI is susceptible to magnetic susceptibility
artifacts, reducing its diagnostic reliability (7, 8).
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In recent years, texture analysis (TA) has emerged as a prom-
ising image-based technique to extract quantitative features
that describe tumor heterogeneity, aiding in diagnosis and
prognosis across various tumor types (9, 10). Despite its growing
application, no prior study has specifically assessed the diagnos-
tic utility of TA derived from standard routinely acquired MRI
sequences, including T1-weighted imaging (T1WI), T2-weighted
imaging (T2WI), and ADC maps, in differentiating MPNSTs
from BPNSTs.

This retrospective study aimed to evaluate the diagnostic
performance of TA applied to TIWI, T2WI, and ADC maps in
differentiating MPNSTs from benign schwannomas represent-
ing BPNSTs. Additionally, we compare the diagnostic accuracy
of TA with that of the conventional ADC value-based method.

PATIENTS AND METHODS
Patient Selection

This single-center retrospective study was approved by the
local ethics committee (Approval number : 4376), with all pro-
cedures adhering to local data protection regulations and the
Declaration of Helsinki.

The inclusion criteria were : (1) a pathological diagnosis of
MPNST or benign schwannoma based on biopsy or surgical
specimens ; and (2) availability of pre-biopsy or pre-operative
1.5T MRI examinations conducted between April 2013 and April
2022 at our institution, including TIWI, T2WI, and ADC maps
suitable for TA.

The exclusion criteria were : (1) inadequate image quality due
to low resolution or severe artifacts ; and (2) MRI performed
after biopsy or more than 6 months prior to pathological diagno-
sis. No restrictions were placed on the patient’s age, tumor size,
or clinical stage.
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MRI Data Acquisition

MRI was performed using a 1.5T system (Signa HDxt or
Signa Explorer, GE Healthcare, USA). Acquisition parameters
were as follows : (a) TIWI : sequence = fast spin echo (FSE) ; rep-
etition time (TR) /echo time (TE) = 391-625/7.3—26.9 ms ; field
of view (FOV) = 120 x 120-350 x 350 mm ; matrix = 288 X
192-388 x 388 ; slice thickness = 3—-7 mm ; slice gap = 3.5-8
mm ; pixel band width = 81-195 Hz/pixel ; acquisition time =
1 min 48 s—2 min 37 s. (b) T2WI: sequence = FSE ; TR/TE =
2913-5523/93.4-106 ms ; FOV =120 X 120-350 x 350 mm ; ma-
trix = 288 X 192—-320 x 320 ; slice thickness = 3—8 mm ; slice gap
= 3.5-10 mm ; pixel band width = 81-244 Hz/pixel ; calculated
chemical shift = 0.7-2.5 pixels ; acquisition time = 1 min 30
s—3 min 4 s. (¢) DWI: sequence = spin echo-echo planar imag-
ing ; TR/TE = 3315-7239/66.3—93.2 ms ; FOV = 200 x 200—-400
X 400 mm ; matrix = 84 X 84-128 X 160 ; slice thickness =
3—6 mm ; slice gap = 3—6 mm ; pixel band width = 81-244 Hz/
pixel ; acquisition time = 1 min 39 s—3 min 47 s ; b-values = 0 and
700 or 800 s/mm?.

Texture Feature Analysis

Tumor segmentation and texture feature (TF) extraction
were performed using LIFEx version 7.2.0 (IMIV/CEA, Orsay,
France) (11). Two diagnostic radiologists (T.M., with 7 years of
experience ; and T.S., with 24 years of experience), blinded to the
diagnoses, independently delineated regions of interest (ROIs)
slice-by-slice on TIWI, T2WI, and ADC maps to generate vol-
umes of interest (VOIs) as large as possible not including outer
margin of the tumor to avoid partial volume effects and chemical
shift artifacts. Final VOIs were determined by consensus (Fig.
1).

A total of 90 TFs were extracted from each VOI in accordance
with the Image Biomarker Standardization Initiative guide-
lines (12). These included : morphological indices (12 features),
intensity histogram parameters (23 features), grey-level co-oc-
currence matrix (GLCM : 23 features), neighborhood grey-tone
difference matrix (NGTDM : 5 features), grey-level run-length
matrix (GLRLM : 11 features), and grey-level size zone matrix
(GLSZM : 16 features).

Fig 1.
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TF calculation settings were : (1) spatial resampling to 2.0 X
2.0 X 2.0 mm voxel size and (2) intensity discretization into 64
grey levels between the minimum and maximum values within
each VOI (13, 14).

Statistical Analysis

All statistical analyses were performed using EZR version
1.61 (Saitama Medical Center, Jichi Medical University, Japan)
(15). The Mann—Whitney U test was used to compare continuous
variables that did not follow a normal distribution, whereas
the Fisher’s exact test was used to compare categorical demo-
graphic variables. A p-value < 0.05 was considered statistically
significant.

Receiver operating characteristic (ROC) curve analysis was
conducted for all TFs showing significant differences, and the
area under the curve (AUC) was calculated to assess diagnostic
performance. As a secondary evaluation, the minimum, mean,
and maximum ADC values were measured on the single slice
where each tumor size reached the maximum. AUC values for
ADC-derived parameters were computed using the same meth-
od and statistically compared with those of TFs using Del.ong’s
test (16).

RESULTS

A retrospective review of our institutional database identified
17 patients who met the inclusion criteria. Of these, three were
excluded due to a pathological diagnosis being made more than 6
months after MRI acquisition.

The final study cohort comprised 14 patients (4 males, 10 fe-
males) with a median age of 57 years (range : 18—81 years). One
patient presented with two MPNSTS, resulting in a total of 15
tumors : seven MPNSTSs and eight benign schwannomas. The
demographic characteristics of the cohort are summarized in
Table 1. There was no significant difference in age, sex, and the
median maximum tumor size between MPNSTs and schwanno-
mas (p =0.463, 0.608, and 0.132, respectively).

As T2WI was available for all cases, TA was performed on all
15 tumors. However, TIWI was unavailable in one case each of

Example images of segmentation for MPNST in the upper limb (a) and schwannoma in the paraspinal space (b). Two diagnostic

radiologists independently delineated the regions of interest (ROIs) slice-by-slice on T2-weighted imaging (T2WI), T1-weighted imaging
(T1WI), and apparent diffusion coefficient (ADC) maps to generate the volume of interest (VOI).
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MPNST and schwannoma, reducing the TIWI-based TA dataset
to 13 tumors. ADC maps were unavailable in one schwannoma
case, resulting in 14 tumors for ADC map-based TA.

The Mann—Whitney U test was applied to the 90 TFs ex-
tracted from TIWI, T2WI, and ADC maps. The number of TFs
showing statistically significant differences (p < 0.05) between
MPNSTSs and benign schwannomas varied by sequence : 38 for
T2WI, 23 for ADC maps, and 1 for TIWI (Table 2). A comprehen-
sive list of significant TFs is provided in the Supplemental Table.

ROC curve analysis was performed for each TF with signif-
icant group-wise differences. To streamline reporting, an AUC

Table 1.

population

Demographic and clinical characteristics of the study
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threshold of 0.87 was used to define high diagnostic accuracy.
Table 3 lists the TFs with AUC values exceeding this threshold.
The highest AUCs were observed for T2WI NGTDM Contrast and
T2WI GZSZM Grey Level Variance, both achieving an AUC of 0.911
(95% CI: 0.755—1.000).

Among the ADC-derived parameters measured at the single
slice where each tumor size reached the maximum, the minimum
and mean ADC values showed statistically significant differenc-
es between MPNSTSs and schwannomas, with AUCs of 0.898 for
both (95% CI : 0.691-1.000). In contrast, maximum ADC values
did not demonstrate significant differences (Table 4).

Table 2. Number of texture features showing significant differences
between MPNST and benign schwannoma by feature type

MPNST  Schwannoma p-value T2WI ADCmap T1WI
Tumor 7 8 Morphological indices None None None
Patient (underlying NF-1) 6 (5) 8 (1) Intensity-Histogram parameters 11 11 1
Median age (years) (range) 53 (18-81) 58(33-76)  0.463 GLCM 17 7 None
Sex (male, female) 2,4 2,6 0.608 NGTDM 2 1 None
ls\fzeedﬁlm‘;l‘z‘:;f‘g‘;n BUMOT 59 (96-70) 25 (15-152)  0.132 GLRLM 3 3 None
GLSZM 5 1 None
Total 38 23 1
Table 3. Texture features with AUC > 0.87 and their corresponding AUC values
T2WI Features AUC 95% CI
Intensity-Histogram Variance 0.875 0.688-1.000
Mean Absolute Deviation 0.875 0.688-1.000
Median Absolute Deviation 0.875 0.688-1.000
GLCM Joint Variance 0.875 0.688-1.000
Difference Average 0.875 0.660-1.000
Dissimilarity 0.875 0.660-1.000
Inverse Difference 0.875 0.660-1.000
Normalized Inverse Difference 0.875 0.660-1.000
Inverse Difference Moment 0.875 0.660-1.000
NGTDM Contrast 0.911 0.755-1.000
GLSZM Grey Level Variance 0.911 0.755-1.000
ADC maps Features AUC 95% CI
Intensity-Histogram 90th Percentile 0.888 0.695-1.000
Uniformity 0.878 0.634-1.000
GLCM Joint Average 0.878 0.696-1.000
Sum Average 0.878 0.696-1.000
Autocorrelation 0.878 0.696-1.000
GLRLM Short Run High Grey Level Emphasis 0.878 0.686-1.000
Table 4. Comparison of ADC values between MPNST and benign schwannoma
MPNST Schwannoma
ADC values Nii(li(l)a;lm(ﬁ;; f)e ) 1\/§§<11(i)§3111n(£?21/1§)e) p-value AUC 95% CI
Minimum 0.94 (0.55-1.20) 1.47 (0.91-1.93) 0.0147 0.898 0.691-1.000
Mean 1.51 (1.23-2.11) 1.95 (1.78-2.40) 0.0111 0.898 0.691-1.000
Maximum 2.09 (1.58-2.96) 2.45 (2.26-2.85) 0.259 0.694 0.371-1.000
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Comparative ROC analysis using DelLong’s test revealed no
statistically significant differences between the two ADC-de-
rived parameters (minimum and mean ADC values) and the two
top-performing TFs (T2WI NGTDM Contrast and T2WI GZSZM Grey
Level Variance) (Fig. 2).

DISCUSSION

This study demonstrates that several TFs extracted from
T2WI and ADC maps achieve high diagnostic accuracy in
distinguishing MPNSTSs from benign schwannomas. Among
these, T2WI NGTDM Contrast and T2WI GZSZM Grey Level Variance
showed the highest diagnostic performance (AUC = 0.911 [95%
CI:0.755-1.000]).

Both minimum and mean ADC values also differed sig-
nificantly between MPNSTs and benign schwannomas, each
achieving an AUC of 0.898 (95% CI : 0.691-1.000). Notably,
DeLong’s test revealed no statistically significant difference in
diagnostic accuracy between these ADC parameters and the
top-performing TFs.
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TA is a quantitative imaging technique that uses mathemat-
ical descriptors to evaluate image heterogeneity and spatial sig-
nal distribution. It can extract information not readily apparent
to visual inspection, and has been reported to be potentially
relevant to the clinical outcome and pathological characteristics
(17). One key application of TA is the non-invasive differentiation
between benign and malignant lesions.

A basic component of TA is intensity histogram analysis,
which assesses variability and bias in pixel or voxel intensity dis-
tribution by dividing values into discrete bins (18). Parameters
like kurtosis and skewness derived from these histograms assist
in tumor characterization (19). In this study, TFs that measure
signal variability — such as variance and uniformity — achieved
high AUC values (Table 3). MPNSTs demonstrated lower signal
variability than benign schwannomas (Supplemental Table),
consistent with histopathological differences : MPNSTSs are
densely cellular, while schwannomas exhibit a heterogeneous
mix of hypercellular Antoni A and hypocellular Antoni B regions
(20). This supports the idea that TA may reflect the underlying
tissue pathological architecture, and serve as a potential non-in-
vasive tool for differentiating benign and malignant neurogenic
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Fig 2. Comparison of receiver operating characteristic (ROC) curves for apparent diffusion coefficient (ADC) values and texture
features : (a) mean ADC values vs. T2WI GLSZM Grey Level Variance, (b) minimum ADC values vs. T2WI GLSZM Grey Level Variance,
(¢) mean ADC values vs. T2WI NGTDM Contrast, and (d) minimum ADC values vs. T2WI NGTDM Contrast. Delong’s test showed no
statistically significant differences between the ROC curves for any of the paired parameters (all p > 0.05).
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tumors. However, literature on TA does not provide clear evi-
dence that supports the above hypothesis intertwining pathology
and MRI on PNSTs.

A percentile in histogram analysis represents the intensity
value below which a given percentage of the data falls. For in-
stance, if the 90th percentile is k, then 90% of the distribution
lies below k. Thus, a reduced ADC histogram 90th percentile under
the condition of discretized signal intensity suggests that most
internal signals fall within a lower ADC value range when ADC
value ranges are comparable in extent, and the measured mini-
mum, mean, and maximum ADC values are lower. Our results
demonstrated that the ADC intensity histogram 90th percentile was
lower in the malignant group (Supplemental Table), consistent
with findings from previous studies (21, 22). This may indicate
that malignant tumors tend to have lower ADC values and/or
exhibit more homogeneous distributions on ADC maps.

When most intensity values cluster within a single bin in
a histogram, the uniformity parameter approaches 1 (11). In
our study, ADC intensity histogram uniformity was closer to 1 in
MPNSTSs than in benign schwannomas (Supplemental Table).
Variance, a measure of signal variability, is calculated as the
mean of squared deviations from the average value. In our study,
T2WI intensity histogram variance was lower in MPNSTs than in
benign schwannomas (Supplemental Table). These findings
suggest that MPNSTSs exhibit more homogeneous intensity dis-
tributions on MRI than schwannomas.

GLCM, NGTDM, GLRLM, and GLSZM are advanced tex-
tural parameters that assess pixel/voxel intensity distributions
within an image. GLCM quantifies the frequency of specific
grey-level combinations in adjacent pixels or voxels. GLRLM
evaluates grey-level continuity within image stacks, differing
from GLCM by analyzing run lengths rather than co-occur-
rence. GLSZM measures the number of connected pixel/voxel
clusters with the same grey level. NGTDM calculates the sum
of grey-level differences between a pixel/voxel and its neighbor-
ing pixels/voxels within a defined Chebyshev distance (12). In
this study, several TFs derived from these advanced textural
parameters exhibited significant differences between benign
schwannomas and MPNSTSs. Specifically, TZ2WI GLCM Dissimi-
larity and T2WI GLCM Difference Average were lower in MPNSTs
than in benign schwannomas (Supplemental Table). Dissimilar-
ity and difference average values tend to be lower in uniformly
textured lesions (23). Therefore, these findings further suggest
that MPNSTs have a more homogeneous signal distribution.
This trend aligns with the findings of Ristow et al., who report-
ed similar results in their study of neurogenic tumors using
T2-weighted turbo spin-echo sequences with fat suppression
(spectral attenuated inversion recovery, SPAIR) (10).

Conversely, Qin ef al. examined the correlation between TFs
and glioma grading and found that ADC GLCM Sum Average —
representing the frequency of specific pixel/voxel pairs with de-
fined spatial relationships — tended to be higher in higher-grade
gliomas (24). In contrast, our study found that the ADC GLCM
Sum Average was lower in MPNSTs. This discrepancy suggests
that, while gliomas exhibit increased heterogeneity with ma-
lignancy, peripheral neurogenic tumors may display greater
homogeneity in their malignant forms. These findings, along
with previous studies, indicate that TF values alone may not
universally distinguish benign from malignant tumors across
all tumor types, as their diagnostic significance varies depend-
ing on tumor origin.

T2WI NGTDM Contrast and T2WI GLSZM Grey Level Variance had
the highest AUC values in our study (each AUC = 0.911 [95%
CI:0.755—-1]). The cut-off values were 0.262 for T2WI NGTDM
Contrast (sensitivity = 1.00, specificity = 0.75) and 125.4 for T2WI
GLSZM Grey Level Variance (sensitivity = 1.00, specificity = 0.75).
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NGTDM Contrast depends on the dynamic range of grey levels
and the spatial frequency of signal variations (25), while GLSZM
Grey Level Variance measures the variability of zone counts per
grey level (12). In the present study, both features had lower
values in MPNSTSs (Supplemental Table), further supporting the
notion that MPNSTSs exhibit greater homogeneity than benign
schwannomas. Notably, there are other types of MPNSTSs be-
sides the classic ones, such as the rhabdomyoblastic, epithelioid,
and glandular types and others (26) ; however, the MPNST in
our study did not have any pathological features similar to those
of these rare subtypes. According to the proportion of these atyp-
ical subtypes in study populations, texture analyses may have
different diagnostic capacities in discriminating between benign
and malignant neurogenic tumors.

In addition to TA, our analysis of ADC values for differenti-
ating MPNST's from schwannomas showed that both minimum
and mean ADC values differed significantly between benign and
malignant tumors, with high diagnostic accuracy (AUC = 0.898
for both [95% CI : 0.691-1.000]). The optimal cut-off values were
1.13x 10* mm?*/s for minimum ADC (sensitivity = 0.86, speci-
ficity = 0.86) and 1.78 x 10> mm?/s for mean ADC (sensitivity
= 0.86, specificity = 0.86). ADC measurement is a conventional
and straightforward technique for distinguishing malignant
from benign tumors. Notably, Yun et al. reported that mean and
minimum ADC values are effective in differentiating benign
and malignant PNSTs (3). These findings reinforce the utility of
ADC maps as a valuable tool in distinguishing MPNSTSs from
schwannomas.

Furthermore, TA based on T2WI and ADC maps proved
useful in differentiating MPNSTSs from benign schwannomas on
MRI. However, TA did not demonstrate a significant advantage
over conventional methods relying solely on ADC values.

PNSTSs are often located in subcutaneous or paravertebral
regions, where DWI may be affected by artifacts. T2WI gener-
ally offers superior artifact resistance and higher image quality
compared to DWI (27). In clinical practice, DWI or ADC maps
may not always be feasible due to patient-related factors such
as claustrophobia or motion artifacts. Given that T2WI is often
included in standard MRI protocols, it may provide more de-
tailed anatomical information in addition to offering comparable
diagnostic performance to DWI-based TA. Therefore, TA based
on T2WTI is considered versatile and clinically valuable among
the MRI sequences evaluated in this study. Because we studied
T2WI without fat suppression, the chemical shift effect must
be considered. The calculated shift in this study was ranged
from approximately 0.7 to 2.7 pixels for our 1.5T equipment and
outer margins of the tumor are not included in each ROIs (VOIs)
which would not have a severe influence on the results. However,
at higher magnetic field strengths, more attention should be paid
to the chemical shift effect.

T1WI-based TA demonstrated fewer significant differences,
and its AUC values were generally lower than those obtained
from T2WI and ADC maps. This finding is expected, as visual
tumor inhomogeneity is more apparent on T2WI and ADC maps
than on TIWI. Consequently, when discriminating malignant
from benign PNSTs, T1IWI has a lower diagnostic priority than
T2WI and ADC maps, particularly in cases where MRI exam-
ination time is limited.

This study has some limitations. First, the relatively small
sample size — driven by the requirement for definitive patholog-
ical confirmation — limits the generalizability of our findings.
One particular concern is that the MPNSTSs in our study were
relatively smaller than generally reported. Wasa et al. reported
a median maximum tumor size of 9.9 cm among 41 MPNSTs
(5), whereas in our study, it was 5.9 cm. There might be a bias,
given that larger tumors are more likely to have necrosis and can
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increase signal heterogeneity. In addition, as mentioned earlier,
there are some histopathological variants in MPNST, and we
have been unable to perform advanced analysis based on such
tumor subtypes. Therefore, future validation in larger cohorts is
required. Second, we referred to previous reports on TA in MR
imaging to determine analysis settings ; however, optimal ROI
and VOI settings for TA have not been fully standardized. Third,
reproducibility may be limited, as ROI and VOI delineation
were performed manually. Future studies should include larger
prospective cohorts and employ automated, computer-aided
methods for ROI and VOI segmentation to enhance consistency
and reproducibility.

In conclusion, TA demonstrated utility in distinguishing
malignant from benign neurogenic tumors in this retrospective
study of pathologically diagnosed schwannomas and MPNSTs.
However, no significant difference was found between TA and
conventional ADC value-based methods, indicating that TA
offers comparable diagnostic performance to ADC values. Ad-
ditionally, TA based on T2WI proved to be a versatile tool
for differentiating neurogenic tumors, particularly given that
these tumors commonly arise in body surface or paravertebral
regions, where T2WTI is less susceptible to magnetic suscepti-
bility artifacts than DWI. Furthermore, our findings highlight
that MPNSTSs exhibited lower signal variability than benign
schwannomas, reinforcing the potential role of TA in quantify-
ing tumor heterogeneity and contributing to non-invasive tumor
characterization.

CONFLICTS OF INTEREST

The authors declare no conflicts of interest.

ACKNOWLEDGMENTS

The authors would like to express their gratitude to the ra-
diology departments at Tokushima University Hospital for their
support in data collection and analysis. We also acknowledge the
contributions of the medical imaging technicians who assisted
in the interpretation of MRI scans. Additionally, we would like
to thank Editage (www.editage.jp) for English language editing.

REFERENCES

1. YuYH, WudT, Yed, Chen MX: Radiological findings of ma-
lignant peripheral nerve sheath tumor : reports of six cases
and review of literature. World J Surg Oncol 14 : 142, 2016

2. Debs P, Fayad LM, Ahlawat S : MR neurography of periph-
eral nerve tumors and tumor-mimics. Semin Roentgenol
57 :232-240, 2022

3. Yun JS, Lee MH, Lee SM, Lee JS, Kim HdJ, Lee Sd,
Chung HW, Lee SH, Shin MJ : Peripheral nerve sheath
tumor : differentiation of malignant from benign tumors
with conventional and diffusion-weighted MRI. Eur Radiol
31:1548-1557, 2021

4. Berner EA, Hung YP, Nielsen GP, Lozano-Calderén
SA : Malignant peripheral nerve sheath tumors arising
from schwannomas : case series and literature review.
APMIS 129: 524-532, 2021

5. Wasa J, Nishida Y, Tsukushi S, Shido Y, Sugiura H,
Nakashima H, Ishiguro N : MRI features in the differen-
tiation of malignant peripheral nerve sheath tumors and
neurofibromas. AJR Am J Roentgenol 194 : 1568-1574, 2010

6. Pendleton C, Howe BM, Spinner RdJ : Percutaneous

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

T. Matsushita, et al. Texture Analysis for Neurogenic Tumors

image-guided biopsy in malignant peripheral nerve sheath
tumors. Acta Neurochir (Wien) 163 : 515-519, 2021
XuK,LiZ,LiW, Qiud,LiH, LiY, Peng R : Dermatofibrosar-
coma protuberans MRI : A preliminary comparison of dif-
ferent sequences. Curr Med Imaging 20 : €15734056307179,
2024

Moritani T, Kim J, Capizzano AA, Kirby P, Kademian dJ,
Sato Y : Pyogenic and non-pyogenic spinal infections : em-
phasis on diffusion-weighted imaging for the detection of
abscesses and pus collections. Br J Radiol 87 : 20140011,
2014

Scapicchio C, Gabelloni M, Barucci A, Cioni D, Saba L, Neri
E : A deep look into radiomics. Radiol Med 126 : 1296-1311,
2021

Ristow I, Madesta F, Well L, Shenas F, Wright F, Molwitz
I, Farschtschi S, Bannas P, Adam G, Mautner VF, Werner
R, Salamon J : Evaluation of magnetic resonance imag-
ing-based radiomics characteristics for differentiation of
benign and malignant peripheral nerve sheath tumors in
neurofibromatosis type 1. Neuro Oncol 24 : 1790-1798, 2022
Nioche C, Orlhac F, Boughdad S, Reuzé S, Goya-Outi J,
Robert C, Pellot-Barakat C, Soussan M, Frouin F, Buvat
I:LIFEx: a freeware for radiomic feature calculation
in multimodality imaging to accelerate advances in the
characterization of tumor heterogeneity. Cancer Research
78 : 4786-4789, 2018

Zwanenburg A, Leger S, Vallieres M, Lock S : Image
biomarker standardisation initiative. arXiv preprint,
arXiv:1612.07003, 2016

Uchida Y, Yoshida S, Arita Y, Shimoda H, Kimura K,
Yamada I, Tanaka H, Yokoyama M, Matsuoka Y, Jinzaki
M, Fujii Y : Apparent diffusion coefficient map-based tex-
ture analysis for the differentiation of chromophobe renal
cell carcinoma from renal oncocytoma. Diagnostics (Basel)
12: 817, 2022

Yamada I, Oshima N, Miyasaka N, Wakana K, Wakabayashi
A, Sakamoto J, Saida Y, Tateishi U, Kobayashi D : Texture
analysis of apparent diffusion coefficient maps in cervical
carcinoma : Correlation with histopathologic findings and
prognosis. Radiol Imaging Cancer 2 : €190085, 2020
Kanda Y : Investigation of the freely available easy-to-use
software ‘EZR’ for medical statistics. Bone Marrow Trans-
plant 48 : 452-458, 2013

DeLong ER, DeLong DM, Clarke-Pearson DL : Comparing
the areas under two or more correlated receiver operating
characteristic curves : a nonparametric approach. Biomet-
rics 44 : 837-845, 1988

Corrias G, Micheletti G, Barberini L, Suri JS, Saba L : Tex-
ture analysis imaging “what a clinical radiologist needs to
know”. Eur J Radiol 146 : 110055, 2022

Kunimatsu A, Yasaka K, Akai H, Sugawara H, Kunimatsu
N, Abe O : Texture analysis in brain tumor MR imaging.
Magn Reson Med Sci 21 : 95-109, 2022

Kamiya A, Murayama S, Kamiya H, Yamashiro T, Oshiro
Y, Tanaka N : Kurtosis and skewness assessments of solid
lung nodule density histograms : differentiating malignant
from benign nodules on CT. Jpn J Radiol 32 : 14-21, 2014
Magro G, Broggi G, Angelico G, Puzzo L, Vecchio GM, Virzi
V, Salvatorelli L, Ruggieri M : Practical approach to his-
tological diagnosis of peripheral nerve sheath tumors : An
update. Diagnostics (Basel) 12 : 1463, 2022

Ozturk M, Polat AV, Selcuk MB : Whole-lesion ADC
histogram analysis versus single-slice ADC measurement
for the differentiation of benign and malignant soft tissue
tumors. Eur J Radiol 143 : 109934, 2021

ZhangZ, Song C, Zhang Y, Wen B, Zhu J, ChengdJ : Apparent



23.

24.

The Journal of Medical Investigation Vol. 72 August 2025

373

diffusion coefficient (ADC) histogram analysis : differentia- 25. de la Luz Escobar M, De la Rosa JI, Galvan-Tejada CE,
tion of benign from malignant parotid gland tumors using Galvan-Tejada JI, Gamboa-Rosales H, de la Rosa Gomez
readout-segmented diffusion-weighted imaging. Dentomax- D, Luna-Garcia H, Celaya-Padilla JM : Breast cancer
illofac Radiol 48 : 20190100, 2019 detection using automated segmentation and genetic algo-
Aghigh A, Cardot J, Mohammadi MS, Jargot G, Ibrahim rithms. Diagnostics (Basel) 12 : 3099, 2022
H, Plante I, Légaré F : Accelerating whole-sample 26. Shintaku M, Nakade M, Hirose T : Malignant peripheral
polarization-resolved second harmonic generation imaging nerve sheath tumor of small round cell type with pleomor-
in mammary gland tissue via generative adversarial net- phic spindle cell sarcomatous areas. Pathol Int 53 : 478-482,
works. Biomed Opt Express 15 : 5251-5271, 2024 2003
Qin JB, Liu Z, Zhang H, Shen C, Wang XC, Tan Y, Wang 27. Chilla GS, Tan CH, Xu C, Poh CL : Diffusion weighted
S, Wu XF, Tian J : Grading of gliomas by using radiomic magnetic resonance imaging and its recent trend-a survey.
features on multiple magnetic resonance imaging (MRI) Quant Imaging Med Surg 5 : 407-422, 2015
sequences. Med Sci Monit 23 : 2168-2178, 2017
Supplemental Table
Texture feature Median p-value AUC 95% CI
MPNST Schwannoma
T2WI
Intensity histogram
Variance 68.20945622 155.5479137 0.014 0.875 0.688-1.000
Kurtosis 0.528322485 -0.290294287 0.0289 0.839 0.613-1.000
90th Percentile 41 49 0.0314 0.839 0.634-1.000
Interquartile Range 11 17.5 0.0314 0.839 0.615-1.000
Mean Absolute Deviation 6.462239479 10.18849474 0.014 0.875 0.688-1.000
Robust Mean Absolute Deviation 4.656909839 7.571765001 0.0205 0.857 0.688-1.000
Median Absolute Deviation 6.462064444 10.06782864 0.014 0.875 0.688-1.000
Coefficient Of Variation 0.288631358 0.363952139 0.0401 0.821 0.598-1.000
Quartile Coefficient of Dispersion 0.193548387 0.251759834 0.0239 0.857 0.649-1.000
Entropy Log2 5.068672424 5.550036382 0.0205 0.857 0.649-1.000
Uniformity 0.035657851 0.025166488 0.0205 0.857 0.649-1.000
GLCM
Joint Maximum 0.007167045 0.004619272 0.0289 0.839 0.626—-1.000
Joint Variance 61.7751959 137.1519079 0.014 0.875 0.688-1.000
Joint Entropy Log? 9.454281947 10.13201913 0.0401 0.821 0.598-1.000
Difference Average 5.28254886 7.678845932 0.014 0.875 0.660-1.000
Difference Variance 23.19658687 51.99882234 0.0205 0.857 0.649-1.000
Difference Entropy 9.454281947 10.13201913 0.0401 0.821 0.598-1.000
Sum Variance 204.495719 422.7065395 0.0205 0.857 0.649-1.000
Sum Entropy 9.454281947 10.13201913 0.0401 0.821 0.598-1.000
Angular Second Moment 0.002313776 0.001212564 0.0401 0.821 0.598-1.000
Contrast 54.44649643 111.0484525 0.0205 0.857 0.636-1.000
Dissimilarity 5.28254886 7.678845932 0.014 0.875 0.660—1.000
Inverse Difference 0.29655479 0.224887553 0.014 0.875 0.660—-1.000
Normalized Inverse Difference 0.928831177 0.900788344 0.014 0.875 0.660—-1.000
Inverse Difference Moment 0.208624886 0.137477049 0.014 0.875 0.660—-1.000
Normalized Inverse Difference Moment 0.987428526 0.975826934 0.0205 0.857 0.636—-1.000
Cluster Tendency 204.495719 422.7065395 0.0205 0.857 0.649-1.000
Cluster Prominence 143097.5491 595094.8606 0.0205 0.857 0.663—-1.000
NGTDM
Contrast 0.163572275 0.449702212 0.00591 0.911 0.755-1.000
Complexity 4973.513493 7950.451186 0.0289 0.839 0.613-1.000
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Texture feature Median p-value AUC 95% CI
MPNST Schwannoma
GLRILM
Short Runs Emphasis 0.949130872 0.973738638 0.0401 0.821 0.564-1.000
Long Runs Emphasis 1.250797679 1.113846629 0.0401 0.821 0.564-1.000
Run Percentage 0.930228612 0.964970443 0.0401 0.821 0.564-1.000
GLSZM
Large Zone Emphasis 46.65958284 4.468649302 0.0289 0.839 0.590-1.000
Normalized Grey Level Non-Uniformity 0.030059663 0.022759413 0.0205 0.857 0.649-1.000
Zone Percentage 0.400409707 0.623638382 0.0401 0.821 0.564-1.000
Grey Level Variance 93.75421039 156.9999012 0.00591 0.911 0.755-1.000
Zone Size Variance 40.42236654 1.89443391 0.0205 0.857 0.612-1.000
ADC map
Intensity histogram
Mean 26.49245331 35.47975078 0.0262 0.857 0.654-1.000
Variance 72.75544318 133.1513099 0.0379 0.837 0.586—1.000
Skewness 0.478205122 -0.470695151 0.0379 0.837 0.586-1.000
Median 26 37 0.0346 0.847 0.638-1.000
90th Percentile 39 50 0.018 0.888 0.695-1.000
Interquartile Range 10 15 0.0342 0.847 0.601-1.000
Mean Absolute Deviation 5.799962972 9.090185867 0.0262 0.857 0.613-1.000
Robust Mean Absolute Deviation 4.053969359 6.608423483 0.0379 0.837 0.586-1.000
Median Absolute Deviation 5.713497823 9.037610619 0.0262 0.857 0.613-1.000
Entropy Log2 4.861029987 5.366512212 0.0262 0.857 0.613-1.000
Uniformity 0.041969157 0.03058006 0.0175 0.878 0.634-1.000
GLCM
Joint Average 26.09768763 37.63613614 0.0175 0.878 0.696-1.000
Joint Variance 56.0670121 120.0668191 0.0262 0.857 0.613-1.000
Sum Average 52.19537525 75.27227227 0.0175 0.878 0.696-1.000
Sum Variance 195.3480086 355.1661851 0.0262 0.857 0.613-1.000
Angular Second Moment 0.003711337 0.001750221 0.0262 0.857 0.637-1.000
Autocorrelation 722.6962916 1455.914248 0.0175 0.878 0.696-1.000
Cluster Tendency 195.3480086 355.1661851 0.0262 0.857 0.613-1.000
NGTDM
Complexity 3607.830752 7116.319279 0.0379 0.847 0.586-1.000
GLRILM
High Grey Level Run Emphasis 795.9334807 1399.096269 0.0262 0.857 0.654-1.000
Short Run High Grey Level Emphasis 745.02301 1360.032472 0.0175 0.878 0.686-1.000
Long Run High Grey Level Emphasis 1078.95118 1577.467712 0.0379 0.837 0.601-1.000
GLSZM
High Gray Level Zone Emphasis 1061.632921 1309.858447 0.0379 0.837 0.601-1.000
TIWI
Intensity histogram
Quartile Coefficient of Dispersion 0.156402737 0.214285714 0.0452 0.845 0.601-1.000




