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Abstract : Background : Coronary artery disease (CAD) is a leading cause of mortality worldwide. Coronary ar-
tery calcification (CAC) is a key indicator of CAD, reflecting plaque burden. Pericoronary adipose tissue (PCAT) 
promotes vascular inflammation and contributes to plaque development, making it a promising imaging bio-
marker. This study aimed to create a radiomics-based model using cardiac CT features of PCAT around the left 
main coronary artery (LMCA) to predict CAC. Methods : Imaging from forty patients who underwent ECG-gated 
cardiac CT was retrospectively analyzed and grouped by CAC presence. Manual segmentation was performed 
using 3D Slicer to delineate PCAT surrounding the LMCA. Minimum  Redundancy Maximum Relevance (mRMR) 
and Least Absolute Shrinkage and Selection Operator (LASSO) regression were utilized for feature selection. 
Random Forest and support vector machine (SVM) models were trained and compared. Results : From the 1,037 
features extracted, two features with non-zero coefficients were retained at the optimal LASSO parameter (log 
αα = 0.0128). The Random Forest model achieved 92% accuracy and an area under the curve (AUC) of 0.9143, out-
performing SVM. Conclusion : Radiomic features of PCAT on cardiac CT can accurately predict CAC, showing 
its potential as an imaging-based biomarker for CAD risk assessment. J. Med. Invest. 72 : 330-336, August, 2025
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INTRODUCTION
 

Coronary artery disease (CAD) is a leading cause of global 
mortality and disability (1), mainly due to the progression of 
atherosclerotic plaques that narrow or occlude coronary arteries, 
leading to myocardial infarction or sudden death (2). Conven-
tional imaging techniques such as coronary artery calcification 
(CAC) scoring and stenosis evaluation via coronary computed 
tomography angiography (CCTA) are widely employed for risk 
stratification. However, these approaches may fail to detect ear-
ly-stage vascular inflammation or identify vulnerable plaques 
prone to rupture (3-5). 

Growing evidence illustrates the pathophysiological role of 
perivascular adipose tissue (PVAT), the fat surrounding blood 
vessels, in modulating vascular homeostasis (5-7). Under nor-
mal physiological conditions, PVAT exerts anti-inflammatory 
and vasodilatory effects. However, under metabolic or oxidative 
stress, PVAT undergoes phenotypic switching to a pro-inflam-
matory state, characterized by cytokine release, oxidative stress, 
and altered adipokine secretion. This promotes local vascular 
inflammation and accelerates atherosclerosis (3, 5). In the cor-
onary circulation, this subset of PVAT is anatomically referred 
to as pericoronary adipose tissue (PCAT). PCAT is anatomically 

positioned adjacent to the coronary wall, where it actively partic-
ipates in local vascular homeostasis and inflammation (4). Under 
pathological conditions inflammatory remodeling, characterized 
by adipocyte shrinkage, fibrosis and altered lipid-water content 
(7), has been associated with the development and progression 
of coronary pathology (4-6). Increasing attention has been paid 
to the role of PCAT in the pathogenesis of CAD (4-6, 7). Recent 
reviews further highlight PCAT’s potential as a noninvasive 
imaging biomarker for vascular inflammation and residual car-
diovascular risk, supported by its close anatomical proximity to 
the coronary wall and dynamic radiodensity changes in response 
to inflammatory signaling (7, 8). CT-derived PCAT features, 
including radiodensity and textural metrics, have been shown to 
correlate with vascular inflammation (7-9) have been shown to 
reflect early atherovascular inflammatory activity (6-9), reflect 
early atherosclerotic changes, and offer added value in predicting 
cardiovascular risk (8).

Among coronary segments, the left main coronary artery 
(LMCA) holds particular clinical importance. It supplies blood 
to a large portion of the left ventricular myocardium and is 
associated with the highest risk of adverse cardiac events when 
diseased (10). Hemodynamic forces and shear stress patterns 
at the LMCA bifurcation make it especially susceptible to early 
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atherosclerotic plaque formation, which may affect prognosis (10, 
11). While PCAT has been evaluated around various coronary 
segments, the LMCA remains a compelling target for analysis 
due to its prognostic significance and potential influence on vas-
cular remodeling (12).

Cardiac computed tomography (CT), particularly CCTA, 
enables a non-invasive and detailed visualization of coronary 
anatomy and surrounding perivascular structures, including 
PCAT. Quantitative markers such as the fat attenuation index 
(FAI) derived from CT have demonstrated predictive value for 
coronary inflammation and stratifying coronary risk (2, 4). 
However, these single-value attenuation metrics do not account 
for the full spectrum of tissue heterogeneity (7). To address this 
limitation, artificial intelligence techniques such as radiomics 
and deep learning can detect subtle imaging patterns before 
overt calcification or clinical events occur. These methods can 
extract advanced image-based features and analyze textural 
and spatial variations within PCAT and coronary plaques, po-
tentially allowing earlier detection of disease process (13, 14). 
Radiomic features extracted from PCAT have been shown to cor-
relate strongly with coronary inflammation and offer improved 
discriminatory performance of early-stage atherosclerosis com-
pared to traditional CT-derived metrics (15).

Radiomics-based models using cardiac CT have shown prom-
ise in identifying vulnerable plaques (7, 16), predicting CAC (17), 
and outperforming visual or histogram-based assessments in 
detecting early disease states (16, 18). Incorporating radiomics 
into CCTA workflows enhances objectivity and reproducibility, 
particularly in evaluating pericoronary fat distribution and 
calcification, while reducing inter-reader variability when sup-
ported using AI-supported systems (19). Early coronary plaque 
or calcification detection holds significant clinical implications, 
enabling timely intervention, risk factor modification, and better 
long-term outcomes (3, 20). Since obstructive events can result 
from non-calcified or minimally calcified plaques, characterizing 
the perivascular microenvironment may provide additional diag-
nostic value beyond traditional measures (3, 21).

Despite these advantages, radiomics must also be evaluat-
ed in context with other modalities that offer complementary 
strengths and limitations. While invasive modalities such as 
intravascular ultrasound and optical coherence tomography pro-
vide detailed plaque visualization, and PET / CT assesses met-
abolic activity, they are less practical for widespread screening 
(11, 18). In contrast, radiomics applied to cardiac CT represents 
a scalable, non-invasive tool for personalized risk stratification 
and atherosclerotic disease monitoring (9, 13, 18). 

To focus on this potential, this study developed a radiom-
ics-based prediction model for CAC using features extracted 
from PCAT surrounding the left main coronary artery on 
ECG-gated cardiac CT. By focusing on this high-risk region, we 
aimed to evaluate whether PCAT characteristics from CT imag-
ing can effectively predict calcification and potentially support 
risk assessment in CAD in the future. 

PATIENTS AND METHODS

This retrospective study analyzed the imaging data of 40 pa-
tients who underwent ECG-gated CCT at Tokushima University 
Hospital. The imaging data was categorized into two groups 
based on the presence or absence of CAC, as assessed through 
CT imaging. Imaging from 20 patients demonstrated coronary 
calcification (calcification group), while the remaining 20 had 
no observable calcified plaques, with a calcium score of zero 
(non-calcification group). All image data were anonymized and 
processed following institutional data protection protocols. 

Image Acquisition and Segmentation
Using the SYNAPSE Vincent workstation (Fujifilm), coronary 

CT images were acquired using a standard ECG-gated protocol 
optimized for coronary artery visualization. The perivascular 
region around the left main coronary artery was identified and 
images were exported in DICOM format. The formatted images 
were processed using the Segment Editor module in 3D Slicer 
(version 5.2.2), an open-source image analysis platform (22). 
The level- tracing tool was used to manually delineate PCAT 
surrounding the LMCA. Segmentation was performed across 30 
consecutive slices, covering a longitudinal segment of 10-50 mm 
distal to the LMCA ostium. An example of the segmentation pro-
cess and resulting region of interest (ROI) is shown in Figure 1. 

Preprocessing Parameters and Feature Extraction
To ensure consistency across patient images, the following 

preprocessing settings were applied : 
1. Image normalization : A CT images were normalized to a 

range of 0 to 1 prior to feature extraction to mitigate vari-
ability due to absolute intensity differences.

2. Intensity discretization was performed using a fixed bin 
width of 27, dividing the 0-1 range into approximately 37 
bins. This value was chosen based on preliminary testing 
to balance feature robustness and sensitivity.

3. Resampling : No resampling was applied ; the original voxel 
spacing was preserved throughout the feature extraction 
process. 

4. Interpolation : B-spline interpolation (sitkBSpline) was 
used during mask processing to preserve anatomical accu-
racy and ensure smooth boundary transitions. 

Feature extraction was performed independently for each sub-
ject prior to any data splitting. That is, all Radiomics features 
were extracted from the original images before separating the 
dataset into training and test cohorts. To avoid data leakage, 
feature selection and model training were performed exclusively 
on the training cohort, without using any information from the 
test cohort. The test cohort was strictly held out and used only 
for final model evaluation and at no point were test data involved 
in feature selection, model optimization, or parameter tuning.

Radiomic Analysis and Feature Selection 
Following segmentation, radiomic features were extracted 

from each PCAT region utilizing a two-step feature selection 
process was performed to reduce dimensionality and eliminate 
redundancy. The Minimum Redundancy Maximum Relevance 
(mRMR) algorithm (23) was first applied to prioritize features 
with the highest relevance to the classification task. This was 
followed by Least Absolute Shrinkage and Selection Operator 
(LASSO) regression (24) to further refine the feature set, select-
ing only those with non-zero coefficients for model construction.

Model Development
The dataset was randomly split into a training set (n = 28) 

and a test set (n = 12) using a 7 : 3 ratio. The Random Forest and 
Support Vector Machine (SVM) algorithms were respectively 
developed to distinguish between patients with and without 
CAC. Model training and testing were repeated across multiple 
randomized shuffles to ensure stability and robustness.

Performance Evaluation
Random Forest and SVM classifiers were trained and tested 

across multiple randomized splits. Classification accuracy was 
compared between the two models, and the better-performing 
model was selected for final performance evaluation, including 
ROC analysis and feature importance assessment.
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RESULTS

Of the 1,037 radiomic features initially extracted from pericor-
onary adipose tissue, two features were retained after mRMR 
and LASSO regression processing. The two features with 
non-zero coefficients at the optimal regularization parameter 
(log α = 0.0128) were Wavelet-HHL_firstorder_Minimum and 
Wavelet-HHH_firstorder_Minimum. These features represent 
first-order minimum intensity values in high-frequency wave-
let-transformed image components and are shown to capture 
fine-scale variations in tissue density. The distribution of all 
radiomic features across patients is visualized in Figure 2.

Using the selected features, classification models were de-
veloped with both Random Forest and SVM algorithms. The 
Random Forest model achieved a classification accuracy of 
92%, outperforming the SVM, which reached 83% accuracy. 
As a result, Random Forest was selected for final evaluation. 
Feature selection results, including the regularization path and 
cross-validation output, are illustrated in Figure 3. These visual-
izations confirm the robustness of the selected features.

Receiver Operating Characteristic (ROC) curve analysis of 
the Random Forest classifier yielded an Area Under the Curve 
(AUC) of 0.9143, demonstrating high discriminative perfor-
mance in distinguishing patients with and without CAC (Figure 
4). 

DISCUSSION

This study developed a radiomics-based prediction model 
using PCAT features on cardiac CT to predict CAC. Among 
1,037 extracted features, two wavelet-transformed first-order 
features were retained after selection, and the Random Forest 
classifier achieved an AUC of 0.9143, demonstrating strong dis-
criminatory capability. 

The AUC achieved in this study is notably higher than those 
reported in prior PCAT radiomics studies predicting CAC or 
coronary inflammation, such as Hu et al. (17), who reported an 
AUC of 0.846 using a combined clinical and radiomics model, or 
Cheng et al. (15), who reported AUCs in the 0.8–0.88 range for 
coronary inflammation detection. This suggests that our select-
ed features—though fewer in number—may capture meaningful 
pathological variation in pericoronary adipose tissue, particular-
ly in the LMCA region.

Understanding how PCAT morphology reflects underlying 
coronary pathology is essential for interpreting the biological 
significance of radiomics features retained in predictive models. 
Radiomics enables the extraction of quantitative tissue charac-
teristics that go beyond visual interpretation. Prior studies have 
demonstrated that inflammatory modeling of PCAT, including 
adipocyte shrinkage, fibrotic expansion, immune cell infiltra-
tion, and altered microvascular architecture, contributes to 
heterogeneity in CT attenuation values (4, 6, 17). These subtle 

Figure 1.　Example of pericoronary adipose tissue segmentation around the left main coronary artery 
(A) shows the 3D Slicer interface displaying the cardiac CT scan in axial, coronal, and sagittal views during manual 
segmentation. (B) displays an axial slice with the PCAT region highlighted in green and marked by a red circle. (C) shows 
the corresponding binary mask of the segmented region of interest (ROI) used for radiomic feature extraction.
Abbreviations : PCAT, pericoronary adipose tissue ; LMCA, left main coronary artery ; CT, computed tomography ; ROI, region of interest.
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Figure 2.　Heatmap of normalized radiomic features extracted PCAT
This heatmap displays the distribution of 1,037 radiomic features across 40 patients, with y-axis corresponding to individual 
patients and x-axis representing individual features. Patients 0–19 represent the calcification group, while patients 20–39 
represent the non-calcification group. Feature values were normalized for visualization. Because group-wise clustering is 
not visually apparent, machine learning is required to extract and interpret discriminative patterns from the data.
Abbreviations : PCAT, pericoronary adipose tissue ; CAC, coronary artery calcification.

Figure 3.　Feature selection using LASSO regression.
(A) shows the 10-fold cross-validation used to find the best regularization value (log α = 0.0128). The x-axis shows the log-
transformed α values, and the y-axis shows mean squared error (MSE), which measures how well the model predictions 
match the actual outcomes. Each colored line represents the MSE across folds in the cross-validation. The solid curve 
denotes the average MSE. The minimum point on the curve identifies the α that minimizes prediction error. (B) represents 
how the 40 radiomic feature coefficients change as α increases. Each colored line corresponds to one radiomic feature. As 
α increases, most features are progressively shrunk toward zero. Two features (Wavelet-HHL_firstorder_Minimum and 
Wavelet-HHH_firstorder_Minimum) remained at the optimal α and were selected for model building.
Abbreviations : LASSO, least absolute shrinkage and selection operator ; α, regularization parameter ; HHL / HHH, high-frequency wavelet 
decomposition components along the x-, y-, and z-axes ; mRMR, minimum redundancy maximum relevance.
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changes may not be fully captured by simplified metrics such as 
the FAI, which reduces tissue complexity to a single mean value 
(8, 15).

Wavelet-transformed features break the CT image into mul-
tiple resolution levels to detect fine textural variations, while 
first-order descriptors measure how voxel intensities are dis-
tributed, reflecting tissue heterogeneity (13, 15). These radiomic 
attributes particularly sensitive to inflammatory and fibrotic 
remodeling (8, 15). Tan et al. (7) further notes that the PCAT 
remodeling in response to inflammation may influence CT sig-
nals even in the absence of overt plaques, supporting radiomics’ 
capacity to detect subclinical disease processes.

Our anatomical focus on the left main coronary artery 
(LMCA) enhances clinical relevance of this model. The LMCA 
perfuses a large myocardial territory and is associated with a 
higher risk of adverse cardiac outcomes (11). Its bifurcation and 
hemodynamic profile make it particularly prone to early athero-
genensis. Previous work, such as Hu et al. (17), has demonstrated 
that PCAT radiomic features near the LMCA are discriminative 
of calcified plaques. Evaluating PCAT in this segment may 
therefore yield localized radiomic signatures not apparent in 
global scoring systems. 

In addition, our findings align with research by Militello et 
al. (16), who demonstrated that combining radiomic features 
with clinical biomarkers improved CAD prediction and inter-
pretability in their multimodal model. Although our model was 
built using imaging data alone, its high internal performance 
emphasizes the diagnostic potential of PCAT radiomics as a 
non-invasive imaging biomarker.

While promising, radiomics still faces challenges in clinical 
application. Differences in acquisition protocols, segmentation 
methods, and feature extraction pipelines contribute to vari-
ability. As emphasized by Motwani et al. (25), standardization, 

multicenter validation, and integration of clinical parameters 
are necessary for broader applicability. Radiomics should not be 
viewed in isolation : cardiovascular risk is multifactorial, and 
while only a few clinical variables such as age and lipid profile 
correlate strongly with CAC (16), integrating clinical and imag-
ing data could improve model interpretability and support more 
personalized decision-making.

This study has several limitations. The sample size was rel-
atively small and derived from a single center, which may limit 
generalizability. Stratified modeling based on CAC severity (e.g., 
mild, moderate, severe) was not feasible due to the sample size. 
Furthermore, histopathological correlation was not performed, 
though our findings are consistent with prior imaging-pathology 
studies (6-8). Future work should include larger, diverse popula-
tions and explore combined modeling with clinical variables to 
improve interpretability and personalized risk assessment. 

CONCLUSION

This study demonstrated that radiomic features extracted 
from pericoronary adipose tissue surrounding the left main cor-
onary artery on ECG-gated coronary CT can effectively predict 
coronary artery calcification. The model’s strong performance 
highlights the potential of PCAT radiomics as a non-invasive 
imaging marker for early coronary pathology. Further valida-
tion in larger, multi-center cohorts is warranted to confirm its 
clinical utility. 
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Figure 4.　Receiver Operating Characteristic (ROC) curve of the Random Forest model.
The ROC curve illustrates the model’s discriminative ability in classifying patients with and without CAC. 
The AUC was 0.9143, indicating high classification performance.
Abbreviations : ROC, receiver operating characteristic ; AUC, area under the curve ; CAC, coronary artery calcification 
TPR, true positive rate ; FPR false positive rate.
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