

REVIEW

The Future Pioneered by Intestinal Organoid Culture Technology

Koichi Okamoto, Ryo Shinomiya, Hiroyuki Ueda, Tomoyuki Kawaguchi, Kaizo Kagemoto, Yasuyuki Okada, Yutaka Kawano, Masahiro Sogabe, Hiroshi Miyamoto, Yasushi Sato, and Tetsuji Takayama

Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan

Abstract : Intestinal organoids are three-dimensional cell culture models that replicate the structure and function of the intestine, and have drawn significant attention in recent years for their potential in research and medical applications. Organoid culture technology enables the reconstruction of miniature tissues with intestinal structures, often referred to as “mini-organs”, from adult stem cells or induced pluripotent stem cells. This technology allows for the faithful replication of intestinal functions and pathologies that are challenging to reproduce using conventional two-dimensional culture systems. As a result, organoid culture has emerged as a vital platform that is widely utilized in developmental biology, disease modeling, drug screening, and personalized medicine. This article focuses on the clinical applications of organoid culture technology, particularly with respect to the gastrointestinal tract, and provides an overview of its advancements and clinical potential. *J. Med. Invest.* 72: 235-240, August, 2025

Keywords : Intestinal organoids, stem cells, personalized medicine

INTRODUCTION

In recent years, various novel technologies have emerged for culturing cells and tissues in a three-dimensional ex vivo environment while preserving their structure and function. One of the most noteworthy advancements is the technology for culturing organoids. While the culture of intestinal epithelial stem cells has been challenging, advancements in the identification of these cells and a deeper understanding of the stem cell niche have made their sustained culture possible. Reportedly, the addition of three niche factors (EGF, R-spondin, and Noggin) to a Matrigel matrix mimicking the basement membrane facilitated the formation of organoids resembling intestinal crypts (1). Furthermore, the application of organoid culture to human tissues became feasible with the addition of two small-molecule inhibitors: an activin-like receptor kinase inhibitor and a p38 MAP kinase inhibitor (2). Organoid culture is a highly useful tool for the study of stem cell dynamics and can be established from a single endoscopic biopsy specimen, offering great potential for therapeutic development. This technology has also made it possible to culture many organs ex vivo, which has been difficult using traditional two-dimensional culture methods. By extracting functional units of biological tissues and replicating them ex vivo, organoid culture allows for long-term and large-scale cultivation. Additionally, with recent advancements in genome editing, imaging technologies, and RNA sequencing, the field has seen remarkable progress in just a few years, yielding numerous research findings.

In this manuscript, we aim to provide an overview of the potential clinical applications of organoid culture technology, particularly in the field of gastrointestinal research, including our own efforts in this area.

ESTABLISHMENT OF ORGANOID CULTURE TECHNOLOGY

In 2009, Sato *et al.* (1) successfully established the serial cultivation of intestinal epithelial stem cells derived from the mouse small intestine as three-dimensional structures. This was achieved by embedding the cells in Matrigel, an extracellular matrix mimicking the basement membrane, and supplementing the culture medium with factors such as EGF, Noggin, and R-spondin 1 to replicate the microenvironment of the intestinal tract. This culture system was referred to as “organoids.” The development of organoid culture technology was made possible through the identification of intestinal epithelial stem cells and understanding their niche. Intestinal epithelial stem cells are located at the base of intestinal crypts, and in 2007, lineage tracing demonstrated that Leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5)-positive cells at the crypt base are stem cells (3). Additionally, a microenvironment known as the niche exists at the crypt base, where niche factors regulate the self-renewal and differentiation of intestinal epithelial stem cells. The Wnt signaling pathway is essential for maintaining normal intestinal epithelial stem cells (4). EGF controls the cell division of stem cells, while Bone Morphogenetic Protein (BMP) signaling is activated in differentiated cells. Notably, genetically modified mice overexpressing Noggin, a BMP inhibitor, exhibited ectopic crypt hyperplasia (5). Furthermore, Notch signaling regulates the differentiation of intestinal epithelium and is critical for maintaining stem cells (4). These four signaling pathways (Wnt, EGF, BMP, and Notch) are considered to be crucial in the niche environment (6). Moreover, the administration of TGF- β inhibitors and p38 MAPK inhibitors has enabled the long-term culture of human small and large intestinal epithelium (7). Intestinal epithelial organoids can be cultured from patient-derived endoscopic biopsy tissues. Small tissue fragments containing crypts, including stem cells, can be isolated and used to establish organoids. After a certain period of culture, organoids can be fragmented into an appropriate size and re-seeded and embedded within the matrix, allowing for continuous large-scale cultivation (Figure 1). Additionally, by supplementing the culture with Insulin-like growth factor (IGF)-1 and Fibroblast growth factor (FGF)-2, based on genetic analysis of ligand expression in

Received for publication March 31, 2025; accepted July 14, 2025.

Address correspondence and reprint requests to Koichi Okamoto MD, PhD, Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima City, 770-8503, Japan and Fax: +81-88-633-9235. E-mail: okamoto.koichi@tokushima-u.ac.jp

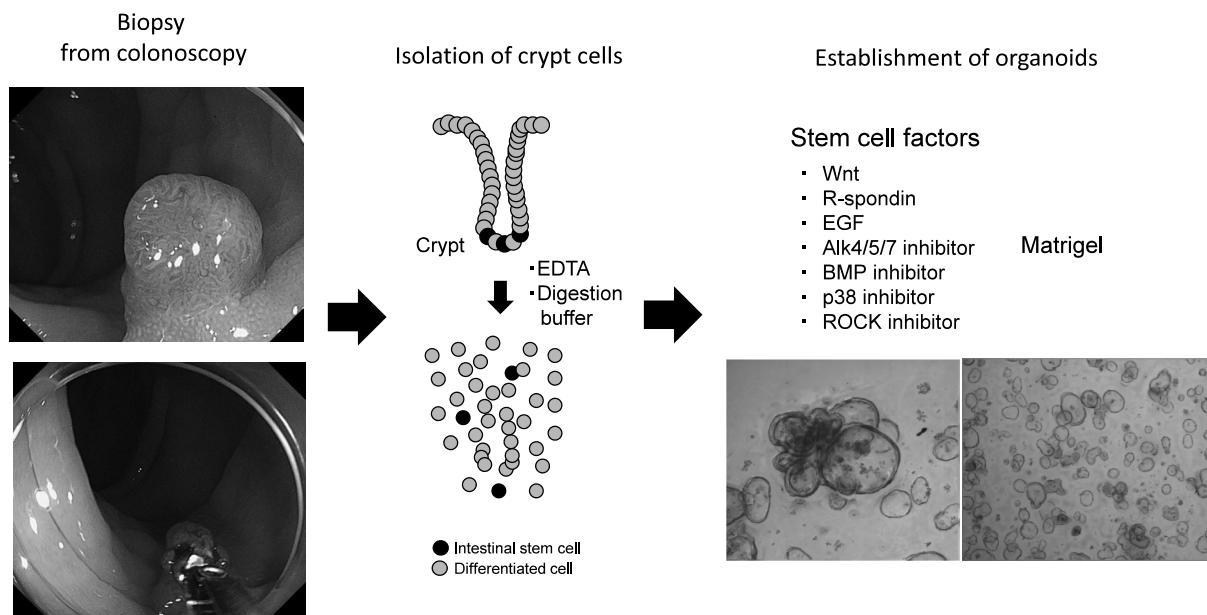


Figure 1.

intestinal fibroblasts and epithelial receptors, intestinal epithelial organoids can be cultured even without the use of p38 MAPK inhibitors. Single-cell RNA sequencing confirmed that, under the modified culture conditions, small intestinal organoids maintained gene expression patterns closely resembling those of *in vivo* small intestinal epithelium (2). The niche factors required for organoid culture vary depending on the species and cell type. For example, in the stomach, FGF-10 is required instead of p38 MAPK inhibitors (1). On the other hand, since organoids derived from tissue stem cells consist of epithelial cells, pluripotent stem cell-derived organoids, such as those originating from embryonic stem cells or induced pluripotent stem cells, may have value in experimental systems requiring stromal cells or when normal cells cannot be obtained from the patient (8).

CLINICAL APPLICATIONS OF ORGANOID CULTURE TECHNOLOGY

In recent years, numerous reports have highlighted the establishment of cancer organoids derived from patient biopsy samples across various cancer types, including gastric cancer (7), colorectal cancer (CRC) (9), neuroendocrine tumors (10), and pancreatic cancer (11). A common misconception is that cancer cells can be easily cultured due to their proliferative capacity. However, the establishment of so-called “cancer cell lines,” which have been used as research tools in cancer studies for decades, is in fact very challenging. Most patient-derived cancer samples fail to grow under standard culture conditions.

In contrast, organoid culture techniques have demonstrated the capacity to cultivate cancer samples from different patients. To date, organoid libraries encompassing not only malignant tumors but also benign tumors and rare tumor subtypes have been established (9). Furthermore, the high genetic similarity between the original tumor tissue and the derived organoids has been confirmed (12). Tumors acquire niche independence during cancer progression, enabling the direct establishment of cells from each patient’s tumor tissue. This has facilitated the verification of niche dependence, genomic analysis, drug

screening, and other applications (Figure 2). Drug development can face significant challenges, such as high costs and prolonged timelines. Thus, the precise evaluation of candidate compounds for efficacy and safety at the preclinical stage, prior to human clinical trials, is highly critical. Drug screening using organoid culture may enable the selection of highly efficacious and safe candidate compounds *in vitro*. Infection models have already been established, including ongoing research studies that have used gastric organoids to reproduce *Helicobacter pylori* infection *in vitro* (13). In addition, organoid-based living biobanks, which allow for the long-term preservation of organoids that reflect the pathological and therapeutic profiles of individual patients, are expected to contribute to the advancement of personalized medicine and the development of novel therapeutics.

Tumor cells can also be assessed for tumorigenicity by transplantation into immunodeficient mice, which allows for the reconstruction of tumor-like tissues resembling the patient’s original tumor. Notably, genome editing techniques using lentivirus or CRISPR/Cas9 to introduce driver mutations into organoids have enabled the forward-engineering of multistage tumorigenesis, marking a significant advancement in tumor biology (14). For example, we previously established sessile serrated lesion (SSL) organoids, a precancerous lesion of the colon, to comprehensively analyze hypomethylated genes associated with SSL carcinogenesis. We identified the S100P gene as the most highly expressed at both the mRNA and protein levels via RT-PCR and immunohistochemistry (15). Knockdown of the S100P gene using lentiviral shRNA vectors in SSL organoids inhibited cell proliferation by more than 50%. In another study, we investigated the differences between right-sided and left-sided CRC since right-sided CRC is associated with poorer prognosis, yet its underlying mechanisms remain unclear. We established patient-derived organoids from both right- and left-sided CRC and directly compared their proliferative and invasive capacities (16). Right-sided cancer organoids exhibited significantly higher proliferative activity and invasive ability compared to left-sided cancer organoids and normal organoids. Comprehensive gene expression analysis revealed elevated Tissue inhibitor of metalloproteinases (TIMP) 1 mRNA and protein levels in right-sided

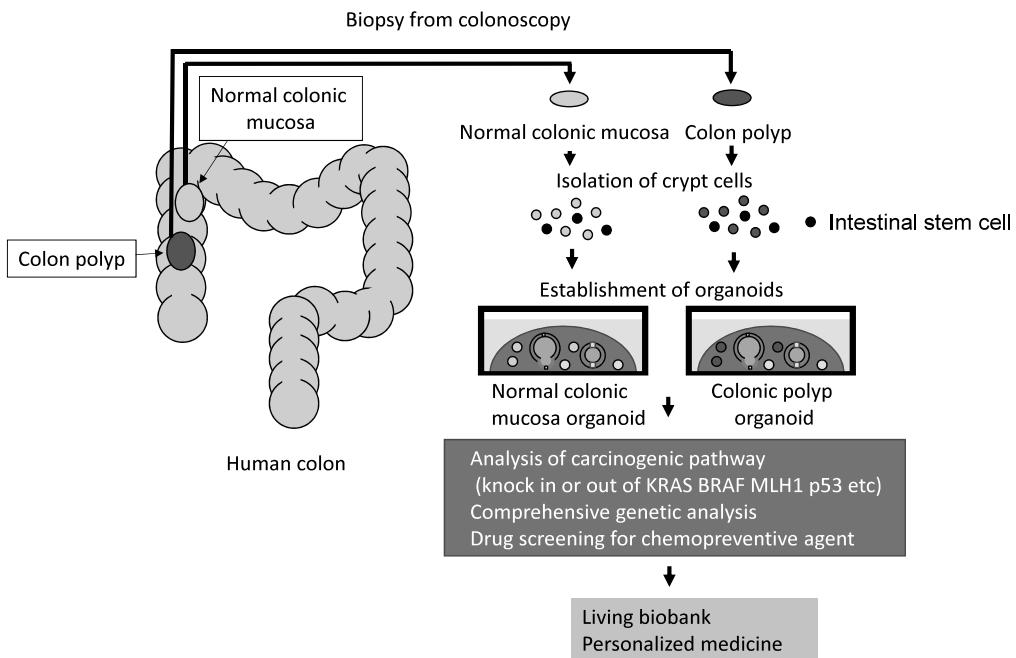


Figure 2.

organoids. Knockdown of TIMP1 using shRNA significantly reduced cell proliferation and invasive capacity in right-sided CRC organoids but had no effect on left-sided CRC organoids. These findings illustrate the utility of genome editing techniques in human organoids for direct functional analyses of specific genes *in vitro*. Moreover, organoid technology is anticipated to advance personalized medicine. By leveraging patient-derived organoids that replicate genetic characteristics of the disease *in vitro*, optimal drug selection tailored to individual patients will become possible. Indeed, a therapeutic agent that was predicted to be effective for a patient with a rare genetic mutation was successfully identified and validated using colonic organoids derived from a cystic fibrosis patient, leading to a successful treatment outcome (17).

However, a major limitation of intestinal organoid culture is the absence of cells constituting the tumor microenvironment, which makes it difficult to evaluate treatment responses involving immune and structural cells. Recently, Kabiljo *J et al.* established patient-derived colorectal cancer organoids and cancer-associated fibroblasts (CAFs) from surgical specimens and developed a triple co-culture system consisting of CAFs, monocytes, and tumor cells to recapitulate features observed in patient tumors. Their study demonstrated that this triple co-culture system, including CAFs, faithfully reproduced TAM-like phenotypes *ex vivo* and served as a useful model for evaluating functional and phenotypic changes in response to treatment (18).

In addition, intestinal organoids have traditionally been generated through a stepwise induction protocol involving a series of growth factors that first induce endodermal differentiation while suppressing the formation of other germ layers, followed by differentiation into specific intestinal epithelial cell types. Consequently, these protocols fail to recapitulate the functional interactions among all three germ layers that naturally occur during organogenesis *in vivo*. However, Uchida *et al.* recently established a method for generating mature, functional intestinal organoids from human pluripotent stem cells (hPSCs) under xenogeneic-free conditions. The resulting organoids contained

various intestinal cell types derived from all three germ layers, including absorptive enterocytes, goblet cells, paneth cells, and enteroendocrine cells. This xenogeneic-free approach to generating hPSC-derived intestinal organoids is expected to serve as a valuable platform for studying human intestinal diseases and for pharmacological testing (19).

ORGANOID TRANSPLANTATION

Regenerative medicine research using organoids has advanced significantly. In 2012, successful rectal transplantation of mouse colon-derived organoids into the epithelial defect sites of dextran sulfate sodium-induced colitis mice was reported (20). Currently, a first-in-human trial is underway to evaluate the safety of transplanting human colonic organoids into patients with ulcerative colitis. While tumor organoids, being independent of niche factors, can proliferate autonomously and grow readily in environments such as the subcutaneous tissue of immunodeficient mice, normal human intestinal cells, which depend on niche factors, cannot proliferate in regions lacking these factors. In 2018, Sugimoto *et al.* (21) developed a technique to transplant normal human colonic organoids into immunodeficient mice by stripping the colonic mucosa using a chelating agent. They demonstrated that the transplanted human colonic organoids could engraft without tumorigenesis for over 10 months within the mouse intestinal tract. In the small intestine, transplantation of small intestinal organoids into rat colons in a short bowel syndrome model extended survival, revealing that small intestinal epithelium can remodel the colon (22). Furthermore, the transplantation of organoids derived from cancer cells or precancerous lesions into the intestinal tract has been applied to tumor research. This includes the successful replication of the distinct clinicopathological features of serrated adenomas, a type of precancerous lesion, in the mouse intestinal tract (23).

DEVELOPMENT OF CHEMOPREVENTIVE DRUGS FOR CRC USING ORGANOIDs FROM PRECANCEROUS LESIONS

Finally, we would like to discuss our research on the development of chemopreventive drugs for CRC using organoids derived from precancerous lesions. Despite advancements in treatment, the global mortality rate of CRC remains high, highlighting the urgent need for effective preventive measures. CRC is thought to primarily arise from adenomas and SSLs, both of which are precancerous lesions. Previous research into chemopreventive drugs targeting colorectal adenomas has suggested that aspirin, NSAIDs, and COX-2 inhibitors may suppress adenoma formation (24, 25). However, these drugs are associated with side effects such as gastrointestinal mucosal damage and cardiovascular complications (26), and no consensus has been reached yet on an effective CRC preventive drug.

Furthermore, studies on chemoprevention of SSLs remain limited but have been reported. Arai J *et al.* conducted transcriptional profiling of SSLs and found decreased expression of genes related to lipid metabolism. They reported that this may be a potential reason why statins and other lipid-lowering agents lack efficacy in right-sided colorectal cancer (27). Additionally, Kanth P *et al.* investigated the effects of EGFR and COX pathway inhibition in organoids derived from both uninvolved colonic tissue and polyps of patients with serrated polyposis syndrome (SPS), and reported that EGFR inhibitors may serve as potential chemopreventive agents for SSLs (28).

Two major challenges have hindered the development of CRC preventive drugs. First, candidate drugs were traditionally identified based on epidemiological data, with no comprehensive or systematic screening methods available at the time. For instance, aspirin and NSAIDs were subjected to clinical trials because epidemiological studies observed a coincidental association with lower CRC incidence. Second, there were no effective

in vitro methods to evaluate the efficacy of preventive drugs. For example, due to the lack of techniques for culturing colorectal adenomas or early-stage cancer cells, it was not possible to assess the effects of aspirin or NSAIDs in vitro. The Connectivity Map, which analyzes the effects of 1,309 existing drugs on whole-genome gene expression, was ultimately developed to address the first issue (29). Using microarray data from adenomas, SSLs, and normal colonic mucosa, we identified multiple promising candidates for CRC chemoprevention (30, 31) (Figure 3).

For the second issue, advances in organoid culture technology have enabled the long-term culture of adenomas and SSLs, making it possible to evaluate drug efficacy in vitro. Additionally, organoid transplantation into the intestines of immunodeficient mice has allowed the creation of *in vivo* models for precancerous lesions. Our analysis demonstrated that, among the tested compounds, the polyphenolic phytochemical resveratrol was the most effective chemopreventive agent in colorectal adenomas. Its efficacy is mediated by the suppression of LEF1 expression in the Wnt signaling pathway (30). Similarly, experiments using SSL-derived organoids identified lansoprazole (LPZ), a proton pump inhibitor, as the compound with the lowest IC₅₀ value, making it a strong candidate for CRC prevention. Furthermore, oral administration of LPZ to mice with orthotopically transplanted SSL organoids significantly suppressed tumor growth (31). In the future, we plan to investigate the inhibitory effects of resveratrol and LPZ on adenomas and SSLs through clinical trials. We have also successfully established organoids from colorectal polyps associated with hereditary CRC syndromes, such as familial adenomatous polyposis, Lynch syndrome, and Peutz-Jeghers syndrome. We aim to develop preventive drugs for these conditions using a similar approach.

All figures and endoscopic images used in this study were approved by the Ethics Committee of Tokushima University Hospital (Approval numbers: 2250 and 3555), and all patients gave written informed consent.

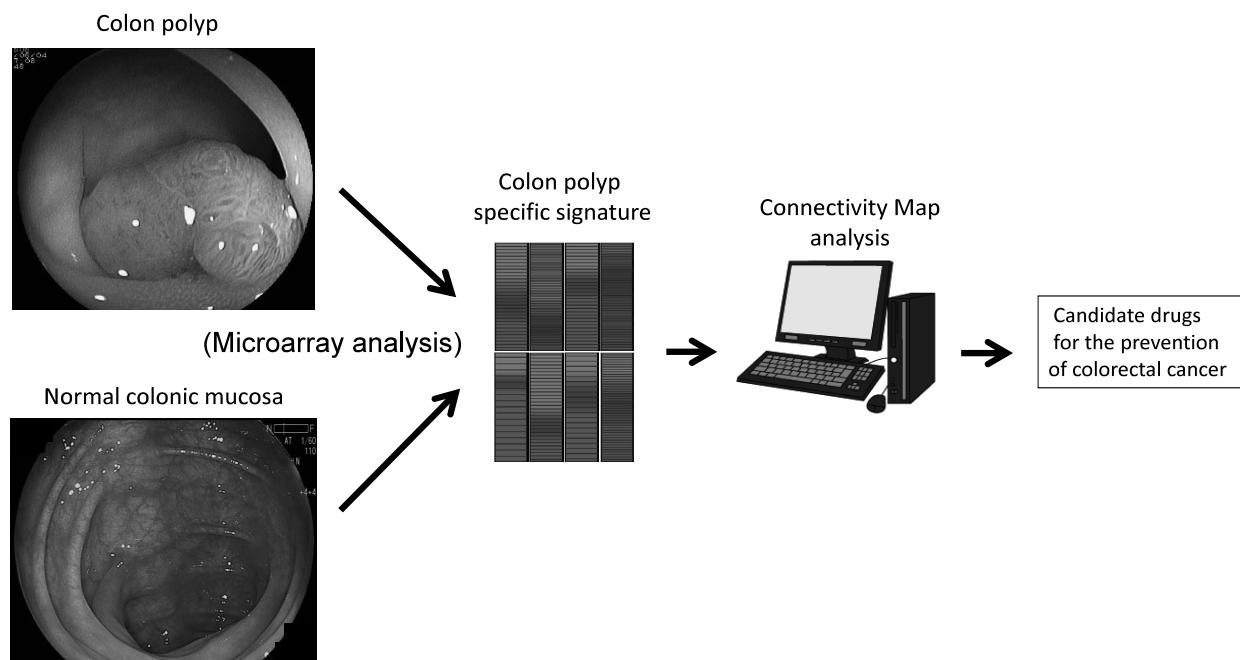


Figure 3.

CONCLUSION

Intestinal organoids represent an innovative model that mimics the functions of the gut and can be utilized across a wide range of fields, from basic to applied research and clinical applications. Advances in large-scale organoid culture techniques and gene editing technologies are expected to drive further development in the near future. In particular, the application of organoids in disease modeling, drug screening, and regenerative medicine holds great promise for advancing medical science. This is especially true in the context of overcoming intractable diseases, including cancers, inflammatory conditions, and hereditary disorders.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

ACKNOWLEDGMENTS

None

REFERENCES

- Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ, Clevers H : Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. *Nature* 459 : 262-265, 2009
- Sato T, Stange DE, Ferrante M, Vries RG, Van Es JH, Van den Brink S, Van Houdt WJ, Pronk A, Van Gorp J, Siersema PD, Clevers H : Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. *Gastroenterology* 141 : 1762-1772, 2011
- Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ, Clevers H : Identification of stem cells in small intestine and colon by marker gene Lgr5. *Nature* 449 : 1003-1007, 2007
- van Es JH, van Gijn ME, Riccio O, van den Born M, Vooijs M, Begthel H, Cozijnsen M, Robine S, Winton DJ, Radtke F, Clevers H : Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. *Nature* 435 : 959-963, 2005
- Haramis AP, Begthel H, van den Born M, van Es J, Jonkheer S, Offerhaus GJ, Clevers H : De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine. *Science* 303 : 1684-1686, 2004
- Sato T, Clevers H : Growing self-organizing mini-guts from a single intestinal stem cell : mechanism and applications. *Science* 340 : 1190-1194, 2013
- Nanki K, Toshimitsu K, Takano A, Fujii M, Shimokawa M, Ohta Y, Matano M, Seino T, Nishikori S, Ishikawa K, Kawasaki K, Togasaki K, Takahashi S, Sukawa Y, Ishida H, Sugimoto S, Kawakubo H, Kim J, Kitagawa Y, Sekine S, Koo BK, Kanai T, Sato T : Divergent Routes toward Wnt and R-spondin Niche Independence during Human Gastric Carcinogenesis. *Cell* 174 : 856-869 e817, 2018
- Spence JR, Mayhew CN, Rankin SA, Kuhar MF, Vallance JE, Tolle K, Hoskins EE, Kalinichenko VV, Wells SI, Zorn AM, Shroyer NF, Wells JM : Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. *Nature* 470 : 105-109, 2011
- Fujii M, Shimokawa M, Date S, Takano A, Matano M, Nanki K, Ohta Y, Toshimitsu K, Nakazato Y, Kawasaki K, Uraoka T, Watanabe T, Kanai T, Sato T : A Colorectal Tumor Organoid Library Demonstrates Progressive Loss of Niche Factor Requirements during Tumorigenesis. *Cell Stem Cell* 18 : 827-838, 2016
- Kawasaki K, Toshimitsu K, Matano M, Fujita M, Fujii M, Togasaki K, Ebisudani T, Shimokawa M, Takano A, Takahashi S, Ohta Y, Nanki K, Igarashi R, Ishimaru K, Ishida H, Sukawa Y, Sugimoto S, Saito Y, Maejima K, Sasagawa S, Lee H, Kim HG, Ha K, Hamamoto J, Fukunaga K, Maekawa A, Tanabe M, Ishihara S, Hamamoto Y, Yasuda H, Sekine S, Kudo A, Kitagawa Y, Kanai T, Nakagawa H, Sato T : An Organoid Biobank of Neuroendocrine Neoplasms Enables Genotype-Phenotype Mapping. *Cell* 183 : 1420-1435 e1421, 2020
- Boj SF, Hwang CI, Baker LA, Chio, II, Engle DD, Corbo V, Jager M, Ponz-Sarvise M, Tiriac H, Spector MS, Gracanin A, Oni T, Yu KH, van Boxtel R, Huch M, Rivera KD, Wilson JP, Feigin ME, Ohlund D, Handly-Santana A, Ardito-Abraham CM, Ludwig M, Elyada E, Alagesan B, Biffi G, Yordanov GN, Delcuze B, Creighton B, Wright K, Park Y, Morsink FH, Molenaar IQ, Borel Rinkes IH, Cuppen E, Hao Y, Jin Y, Nijman IJ, Iacobuzio-Donahue C, Leach SD, Pappin DJ, Hammell M, Klimstra DS, Basturk O, Hruban RH, Offerhaus GJ, Vries RG, Clevers H, Tuveson DA : Organoid models of human and mouse ductal pancreatic cancer. *Cell* 160 : 324-338, 2015
- van de Wetering M, Francis HE, Francis JM, Bounova G, Iorio F, Pronk A, van Houdt W, van Gorp J, Taylor-Weiner A, Kester L, McLaren-Douglas A, Blokker J, Jaksani S, Bartfeld S, Volckman R, van Sluis P, Li VS, Seepo S, Sekhar Pedamallu C, Cibulskis K, Carter SL, McKenna A, Lawrence MS, Lichtenstein L, Stewart C, Koster J, Versteeg R, van Oudenaarden A, Saez-Rodriguez J, Vries RG, Getz G, Wessels L, Stratton MR, McDermott U, Meyerson M, Garnett MJ, Clevers H : Prospective derivation of a living organoid bio-bank of colorectal cancer patients. *Cell* 161 : 933-945, 2015
- McCracken KW, Cata EM, Crawford CM, Sinagoga KL, Schumacher M, Rockich BE, Tsai YH, Mayhew CN, Spence JR, Zavros Y, Wells JM : Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. *Nature* 516 : 400-404, 2014
- Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y, Watanabe T, Kanai T, Sato T : Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. *Nat Med* 21 : 256-262, 2015
- Takahashi S, Okamoto K, Tanahashi T, Fujimoto S, Nakagawa T, Bando M, Ma B, Kawaguchi T, Fujino Y, Mitsui Y, Kitamura S, Miyamoto H, Sato Y, Muguruma N, Bando Y, Sato T, Fujimori T, Takayama T : S100P Expression via DNA Hypomethylation Promotes Cell Growth in the Sessile Serrated Adenoma/Polyp-Cancer Sequence. *Digestion* 102 : 789-802, 2021
- Ma B, Ueda H, Okamoto K, Bando M, Fujimoto S, Okada Y, Kawaguchi T, Wada H, Miyamoto H, Shimada M, Sato Y, Takayama T : TIMP1 promotes cell proliferation and invasion capability of right-sided colon cancers via the FAK/Akt signaling pathway. *Cancer Sci* 113 : 4244-4257, 2022
- Schwank G, Koo BK, Sasselli V, Dekkers JF, Heo I, Demircan T, Sasaki N, Boymans S, Cuppen E, van der Ent CK, Nieuwenhuis EE, Beekman JM, Clevers H : Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. *Cell Stem Cell* 13 : 653-658, 2013
- Kabiljo J, Theophil A, Homola J, Renner AF, Sturzenbecher

N, Ammon D, Zirnbauer R, Stang S, Tran L, Laengle J, Kulu A, Chen A, Fabits M, Atanasova VS, Pusch O, Weninger W, Walczak H, Herndler Brandstetter D, Egger G, Dolznig H, Kusienicka A, Farlik M, Bergmann M : Cancer-associated fibroblasts shape early myeloid cell response to chemotherapy-induced immunogenic signals in next generation tumor organoid cultures. *J Immunother Cancer* 12, 2024

19. Uchida H, Machida M, Miura T, Kawasaki T, Okazaki T, Sasaki K, Sakamoto S, Ohuchi N, Kasahara M, Umezawa A, Akutsu H : A xenogeneic-free system generating functional human gut organoids from pluripotent stem cells. *JCI Insight* 2 : e86492, 2017

20. Yui S, Nakamura T, Sato T, Nemoto Y, Mizutani T, Zheng X, Ichinose S, Nagaishi T, Okamoto R, Tsuchiya K, Clevers H, Watanabe M : Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5(+) stem cell. *Nat Med* 18 : 618-623, 2012

21. Sugimoto S, Ohta Y, Fujii M, Matano M, Shimokawa M, Nanki K, Date S, Nishikori S, Nakazato Y, Nakamura T, Kanai T, Sato T : Reconstruction of the Human Colon Epithelium In Vivo. *Cell Stem Cell* 22 : 171-176 e175, 2018

22. Sugimoto S, Kobayashi E, Fujii M, Ohta Y, Arai K, Matano M, Ishikawa K, Miyamoto K, Toshimitsu K, Takahashi S, Nanki K, Hakamata Y, Kanai T, Sato T : An organoid-based organ-repurposing approach to treat short bowel syndrome. *Nature* 592 : 99-104, 2021

23. Kawasaki K, Fujii M, Sugimoto S, Ishikawa K, Matano M, Ohta Y, Toshimitsu K, Takahashi S, Hosoe N, Sekine S, Kanai T, Sato T : Chromosome Engineering of Human Colon-Derived Organoids to Develop a Model of Traditional Serrated Adenoma. *Gastroenterology* 158 : 638-651 e638, 2020

24. Cole BF, Logan RF, Halabi S, Benamouzig R, Sandler RS, Grainge MJ, Chaussade S, Baron JA : Aspirin for the chemoprevention of colorectal adenomas : meta-analysis of the randomized trials. *J Natl Cancer Inst* 101 : 256-266, 2009

25. Ishikawa H, Mutoh M, Suzuki S, Tokudome S, Saida Y, Abe T, Okamura S, Tajika M, Joh T, Tanaka S, Kudo SE, Matsuda T, Iimuro M, Yukawa T, Takayama T, Sato Y, Lee K, Kitamura S, Mizuno M, Sano Y, Gondo N, Sugimoto K, Kusunoki M, Goto C, Matsuura N, Sakai T, Wakabayashi K : The preventive effects of low-dose enteric-coated aspirin tablets on the development of colorectal tumours in Asian patients : a randomised trial. *Gut* 63 : 1755-1759, 2014

26. Solomon SD, McMurray JJ, Pfeffer MA, Wittes J, Fowler R, Finn P, Anderson WF, Zauber A, Hawk E, Bertagnolli M, Adenoma Prevention with Celecoxib Study I : Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. *N Engl J Med* 352 : 1071-1080, 2005

27. Arai J, Suzuki N, Niikura R, Ooki D, Kawahara T, Honda T, Hasatani K, Yoshida N, Nishida T, Sumiyoshi T, Kiyotoki S, Ikeya T, Arai M, Ishibashi R, Aoki T, Tsuji Y, Yamamichi N, Hayakawa Y, Fujishiro M : Chemoprevention for Colorectal Cancers : Are Chemopreventive Effects Different Between Left and Right Sided Colorectal Cancers? *Dig Dis Sci* 67 : 5227-5238, 2022

28. Kanth P, Hazel MW, Schell JC, Rutter J, Yao R, Mills AP, Delker DA : Evaluation of EGFR and COX pathway inhibition in human colon organoids of serrated polyposis and other hereditary cancer syndromes. *Fam Cancer* 23 : 479-489, 2024

29. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J, Brunet JP, Subramanian A, Ross KN, Reich M, Hieronymus H, Wei G, Armstrong SA, Haggarty SJ, Clemons PA, Wei R, Carr SA, Lander ES, Golub TR : The Connectivity Map : using gene-expression signatures to connect small molecules, genes, and disease. *Science* 313 : 1929-1935, 2006

30. Wada H, Sato Y, Fujimoto S, Okamoto K, Bando M, Kawaguchi T, Miyamoto H, Muguruma N, Horimoto K, Matsuzawa Y, Mutoh M, Takayama T : Resveratrol inhibits development of colorectal adenoma via suppression of LEF1 ; comprehensive analysis with connectivity map. *Cancer Sci* 113 : 4374-4384, 2022

31. Kawaguchi T, Okamoto K, Fujimoto S, Bando M, Wada H, Miyamoto H, Sato Y, Muguruma N, Horimoto K, Takayama T : Lansoprazole inhibits the development of sessile serrated lesions by inducing G1 arrest via Skp2/p27 signaling pathway. *J Gastroenterol* 59 : 11-23, 2024