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The role of thymic epithelium in thymus development and  
age-related thymic involution
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Abstract : The establishment of an adaptive immune system is critical for protecting our bodies from neoplastic 
cancers and invading pathogens such as viruses and bacteria. As a primary lymphoid organ, the thymus gener-
ates lymphoid T cells that play a major role in the adaptive immune system. T cell generation in the thymus is 
controlled by interactions between thymocytes and other thymic cells, primarily thymic epithelial cells. Thus, 
the normal development and function of thymic epithelial cells are important for the generation of immuno-
competent and self-tolerant T cells. On the other hand, the degeneration of the thymic epithelium due to thymic 
aging causes thymic involution, which is associated with the decline of adaptive immune function. Herein we 
summarize basic and current knowledge of the development and function of thymic epithelial cells and the 
mechanism of thymic involution. J. Med. Invest. 71 : 29-39, February, 2024
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INTRODUCTION
 

Adaptive immunity is a sophisticated defense system in the 
human body. Lymphoid T cells, one of the major cell populations 
in the adaptive immune system, are capable of discriminating 
between self and non-self antigens. T cells respond to invading 
pathogens with antigen specificities but tolerate components 
in the body. Immunocompetent and self-tolerant T cells are 
generated in the thymus. The thymus is composed of hemato-
poietic cells, such as T cells ; thymic epithelial cells (TECs) ; and 
non-TEC stromal cells. These cells form a three-dimensional 
network by interacting with each other, constructing a thymic 
microenvironment consisting of the cortex and the medulla. The 
cortical microenvironment is the site for early T cell development 
and positive selection of functionally competent T cells, whereas 
the medullary microenvironment is the site for negative selec-
tion of self-reactive T cells and the development of regulatory T 
cells to establish self-tolerance. The functional characteristics 
of these two microenvironments are typified by the functions of 
cortical thymic epithelial cells (cTECs) and medullary thymic 
epithelial cells (mTECs), respectively (1). Abnormalities in the 
function and development of TECs lead to immune diseases such 
as immunodeficiencies and autoimmune diseases. Therefore, the 
functional competence of TECs for generating immunocompe-
tent and self-tolerant T cells is important for the proper operation 
of the adaptive immune system.

T cell generation in the thymus decreases in an age-depen-
dent manner. The thymus undergoes the earliest age-related 
chronic involution among the organs of the body (2). Thymic 
involution is also induced transiently by such factors as infection, 
chemotherapy, and stress (3). The reduction of T cell production 
due to age-related thymic involution is linked to the decline of 
adaptive immune function, which, in turn, may be associated 

with a reduced response to vaccination and an increased tumor 
incidence in the elderly (4). It has been reported that thymic 
involution increases the generation of senescent T cells that may 
be associated with age-related diseases (5, 6). Accumulated evi-
dence suggests that the age-related alteration of TEC properties 
is involved in thymic involution. In this regard, the regeneration 
of TECs to restore T cell production in the thymus is a promising 
treatment strategy.

Herein, we discuss the development and function of the thy-
mus, focusing on the developmental and functional mechanisms 
of TECs. We also discuss the mechanisms of thymic involution, 
centering on the degeneration of TECs in the process of age-re-
lated thymic involution.

DEVELOPMENT OF THYMUS
Development of thymic epithelium 

Thymus development is initiated in mid-gestation. In mice, 
TECs, marked by the expression of the transcription factor 
forkhead box protein N1 (Foxn1), develop in a part of the endo-
derm-derived epithelium of the third pharyngeal pouch around 
day 11 of gestation. Cells with characteristics of cTECs and 
mTECs are detectable around day 12 of gestation. The differen-
tiation of cTECs and mTECs from a common thymic epithelial 
progenitor cell is regulated by Foxn1 (7-10). During embryonic 
thymus organogenesis, the majority of TECs express cTEC-as-
sociated molecules such as CD205 and the thymoproteasome 
component β5t, suggesting that embryonic TECs expressing 
cTEC-associated molecules possess progenitor activity. Cell lin-
eage analysis using re-aggregated thymic organ culture or fate 
mapping revealed that embryonic TECs expressing cTEC mol-
ecules contain progenitor cells capable of giving rise to mTECs 
(11, 12). Therefore, it is believed that cTECs and mTECs are de-
rived from common progenitors that progress from a lineage-un-
committed progenitor stage to a transitional TEC progenitor 
stage that expresses cTEC-associated molecules. 

How TECs are supplied to the adult thymus following organ-
ogenesis completion is controversial. Bipotent TEC progenitors 
in the adult thymus have been identified by two independent 
studies (13, 14). The bipotent progenitor activities of TECs isolat-
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ed from the adult thymus were demonstrated experimentally by 
re-aggregating these cells with embryonic thymic cells, although 
the progenitor activity of these cells in the physiological condition 
has not yet been identified. On the other hand, we have reported 
that mTECs in the postnatal thymus are maintained by mTEC 
lineage cells derived from progenitor cells that express β5t from 
the embryonic period to the neonatal period (15). Once the thymic 
medulla is fully formed, the contribution of β5t+ TEC precursors 
to the supply of mTECs is severely limited, if not eliminated (15, 
16). Indeed, mTEC-specific embryonic stem cells that are capa-
ble of generating functional mTECs responsible for the establish-
ment of self-tolerance in T cells have been identified and these 
stem cells are derived from β5t-expressing TEC progenitors (15, 
17). Notably, although the development of cTECs and mTECs is 
severely impaired in the Foxn1-deficient thymus, mTEC stem 
cells are detected even in the absence of Foxn1 expression, sug-
gesting that mTEC stem cells emerge independently of Foxn1 
(18). In addition to mTEC-specific stem cells, mTEC progenitors 
have been identified by tracing the differentiation potential or 
performing the trajectory analysis of single cell-based transcrip-
tome profiles. Several mTEC progenitors have been reported by 
different groups (Fig. 1) (19-25), including Sox9+ TECs, RANK+ 
TECs, keratin 19-expressing TECs, and CCL21+ TECs in the 
embryonic thymus (19, 20, 23, 24). The reported progenitors also 
include podoplanin+ TECs that localize to the cortico-medullary 
junction where TEC progenitors are suggested to be located, as 
well as transient amplifying cells termed TAC-TECs (22, 25). 
However, the relationships among these mTEC progenitor cells 
have remained unknown. Recent studies have reported that 
Notch signaling is required for the production and maintenance 
of mTEC-specific progenitor cells and almost all mTECs have a 
history of receiving Notch signals, suggesting the involvement of 
Notch signaling in mTEC fate determination (26, 27). 

The molecular mechanisms that regulate mTEC development 
and medullary organization are known to involve tumor necrosis 
factor (TNF) superfamily cytokine signaling and NFκB signal-
ing (18, 28, 29). Epigenetic regulators, including histone deacety-
lase 3 (HDAC3) and polycomb repressive complex 2 (PRC2), are 
also involved in the regulation of mTEC development. HDAC3 
controls mTEC development independently of NFκB signaling 
and by repressing Notch signaling (30). Indeed, the forced ex-
pression of Notch1 in TECs results in the blockage of mTEC 
development (26, 27). It has also been reported that mice with 
TEC-specific inhibition of PRC2 function have a hypoplastic 
thymus and show a marked decrease in the number of mature 
mTECs after birth (31). The transcriptional profile in TECs, 
including molecules related to protein processing and antigen 
presentation, is altered, and the diversity of T cell receptor (TCR) 
repertoire is reduced by the functional deficiency of PRC2, indi-
cating that the differentiation and function of postnatal TECs 
are affected by the epigenetic regulation of gene expression (31). 

In contrast to mTECs, little is known about the molecular 
mechanisms that regulate cTEC development, although it has 
long been understood that interactions with immature T cells are 
important for the differentiation and maintenance of cTECs (32). 
The Wnt / β-catenin signaling pathway is known to be involved 
in early thymus development, as shown in mouse studies that 
manipulated core components, including the T cell factor (TCF)/
lymphoid enhancing factor (LEF) family transcription factors, 
Wnt, or β-catenin, either systemically or specifically in keratin 
5+ epithelial cells (33-37). However, the role of the TEC-specific 
Wnt / β-catenin signaling pathway was not addressed in those 
studies owing to extrathymic abnormalities or insufficient gene 
manipulation. By using the Cre-mediated targeting to Foxn1- 
or β5t-expressing cells, we and others showed that the deletion 
of β-catenin, a major mediator of the Wnt / β-catenin signaling 

pathway, in TECs resulted in a decrease in the number of cTECs 
but not mTECs after the neonatal period, but did not affect the 
cortical and medullary thymic structures (38, 39). Furthermore, 
the increase in β-catenin function specifically in TECs leads to 
the impaired differentiation of cTECs and mTECs (38-40). These 
results suggest that Wnt / β-catenin signaling is not essential for 
cTEC and mTEC differentiation, although the signal intensity 
defines the characteristics of TECs and the number of cTECs.

ROLE OF THYMIC EPITHELIUM IN T CELL 
GENERATION
Role of cortical thymic epithelium

Bone marrow-derived T-lymphoid progenitor cells enter the 
thymus through the blood vessels at the cortico-medullary 
junction and move to the cortex. Chemokines, including CXCR4 
ligand CXCL12 and CCR9 ligand CCL25 produced by cTECs 
and CCR7 ligands CCL19 and CCL21 produced by mTECs, con-
tribute to the thymic entry of T progenitor cells (41-43). cTECs 
also express Notch ligand delta-like 4 and cytokine IL-7, which 
are important for the lineage specification and development of 
T cells (44, 45). In addition to the regulation of T cell develop-
ment, cTECs play a crucial role in the positive selection of newly 
generated T cells. cTECs have unique machinery that produces 
positive selection-inducing self-peptides by expressing enzymes, 
including thymus-specific serine protease (TSSP), cathepsin L 
(CTSL), and thymoproteasomes. TSSP and CTSL are involved 
in the generation of MHC class II-associated self-peptides for 
inducing the positive selection of CD4-lineage cells, whereas thy-
moproteasomes generate MHC class I-associated self-peptides 
for inducing the positive selection of CD8-lineage cells (46-49). 
TSSP and CTSL are expressed in other cells including dendritic 
cells (DCs). In contrast, thymoproteasomes are expressed only in 
cTECs because β5t, a component unique to thymoproteasomes, 
is specifically expressed in cTECs (48, 50). The transcription of 
β5t-encoding Psmb11 is directly regulated by Foxn1 (51). How-
ever, Foxn1 is expressed in cTECs, mTECs, and skin keratino-
cytes. Therefore, other mechanisms, in addition to Foxn1, may 
contribute to the regulation of the cTEC-specific transcription 
of Psmb11. The cTEC-specific expression of thymoproteasomes is 
important for the generation of self-peptides that are optimal for 
the positive selection of CD8-lineage cells. It has been theorized 
that differential self-peptide display between the cortex and the 
medulla optimizes T cell generation, allowing positively selected 
T cells to escape from negative selection (52). In contrast to thy-
moproteasomes in the cortex, MHC class I-associated peptides 
are generated by immunoproteasomes or proteasomes in anti-
gen-presenting cells in the thymic medulla. Furthermore, two 
independent studies have reported that the negative selection 
of CD8-lineage thymocytes is enhanced without affecting the 
positive selection when both positive and negative selection-in-
ducing peptides are generated by the same proteasomes (53, 
54). On the other hand, we have reported that the generation of 
CD8T cells is impaired in thymoproteasome-deficient mice, even 
in the absence of the thymic medulla or medullary antigen-pre-
senting cells, including mTECs, DCs, and B cells (55). We have 
also reported that thymoproteasome deficiency reduces posi-
tively selected CD8-lineage thymocytes even when thymocyte 
apoptosis by negative selection is inhibited by the transgenic 
expression of the anti-apoptotic molecule Bcl-2 (55). Therefore, 
thymoproteasomes regulate the positive selection of CD8T cells 
independent of the thymic medulla, medullary antigen-pre-
senting cells, and thymocyte negative selection. A comparative 
analysis of MHC class I-associated peptides displayed by mouse 
embryonic fibroblasts ectopically expressing thymoproteasomes 
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or immunoproteasomes has revealed that thymoproteasomes 
generate self-peptides with optimal binding affinity to TCRs to 
induce positive selection (49). However, thymoproteasome-depen-
dent self-peptides displayed by cTECs have not yet been identi-
fied. The identification of those self-peptides would enhance our 
understanding of the mechanism of thymoproteasome-depen-
dent positive selection.   

It is also interesting to note that cTECs envelop developing 
thymocytes and such cTECs are known as thymic nurse cells 
(56). Each thymic nurse cell engulfs approximately 100 to 150 
thymocytes and provides a microenvironment that optimizes T 
cell selection (56, 57).

Role of medullary thymic epithelium
Positively selected T cells in the cortex migrate to the thymic 

medulla to undergo further selection. To establish self-tolerance 
in the medulla, T cells expressing TCRs that bind with high af-
finity to self-peptide-MHC complexes are eliminated by negative 
selection or differentiate into regulatory T cells that suppress 
the immune response. Positively selected T cells increase the ex-
pression of CCR7, a chemokine receptor (58). On the other hand, 

mTECs express CCR7 ligands CCL19 and CCL21. There are 
two types of CCL21 proteins in mice, CCL21Ser and CCL21Leu, 
which contain serine and leucine at the 65th amino acid, respec-
tively (59). CCL21Ser is encoded by Ccl21a, whereas CCL21Leu 
is encoded by several genes including Ccl21b and Ccl21d. Among 
these CCR7 ligands, CCL21Ser plays an essential role in the 
thymus ; in its absence, the migration of T cells from the cortex 
to the medulla is impaired (60). As a consequence, the negative 
selection of self-reactive T cells in the thymic medulla is im-
paired, and autoimmune disease develops in mice as a result of 
CCL21Ser deficiency, even though the expression of other CCR7 
ligands is intact (60). On the other hand, the impairment of T cell 
migration into the medulla and the development of autoimmune 
diseases are undetectable in mice deficient in CCL19 (60). There-
fore, CCL21Ser has a nonredundant role in the establishment of 
self-tolerance in T cells in the thymic medulla. 

mTECs are unique in terms of the ectopic expression of tis-
sue-specific antigens (TSAs) to establish self-tolerance in T cells. 
The expression of TSAs is regulated by Aire, which is responsi-
ble for the autoimmune polyendocrinopathy-candidiasis-ectoder-
mal syndrome (61-63). Although not a conventional transcription 

Figure 1.　Thymic epithelial cell heterogeneity.  
cTECs and mTECs differentiate from common thymic epithelial cell (TEC) progenitors through intermediate progenitor cells expressing cTEC-
associated molecules. mTECs are divided into two populations, mTEClow and mTEChigh, which are CD80lowMHC class IIlow and CD80highMHC 
class IIhigh, respectively. The mTEChigh subset contains Aire-expressing mTECs. The mTEClow subset contains progenitors that give rise to 
the mTEChigh subpopulation. Several mTEC-restricted progenitors have been identified, including Sox9+ embryonic TECs (eSox9+), RANK+ 
embryonic TECs (eRANK+), keratin19+ embryonic TECs (eKrt19+), and CCL21+ embryonic TECs (eCCL21+). mTEC progenitors also include 
podoplanin+ TECs and TAC-TECs. Functionally mature CCL21+ mTECs, as well as post-Aire mTECs differentiated from the mTEChigh 
subpopulation, also belong to the mTEClow subset. Recent single cell-based comprehensive analysis of TECs has revealed heterogeneous 
TEC subpopulations including post-Aire mimetic mTECs, which transcriptomically mirror extrathymic cells. The mimetic TECs are named 
according to their counterparts (muscle, keratinocyte, Hassall’s corpuscle, secretory / neuroendocrine, microfold, enterocyte / hepatocyte, ciliated, 
and tuft mTECs).
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factor, Aire accounts for the expression of thousands of genes in 
mTECs. Furthermore, it has been reported that the transcrip-
tion factor Fezf2 regulates the expression of Aire-independent 
TSAs (64). On the other hand, it has also been reported that 
Fezf2 deficiency has little impact on the expression of Aire-inde-
pendent TSAs, but affects late-mTEC development (65, 66). The 
significance of Fezf2 function in the establishment of self-toler-
ance is still controversial. mTECs are roughly divided into two 
populations, mTEClow and mTEChigh, which are CD80lowMHC 
class IIlow and CD80highMHC class IIhigh, respectively (Fig 1). 
The mTEChigh subset contains Aire-expressing mTECs and 
is essential for the presentation of self-antigens to developing 
thymocytes. On the other hand, the mTEClow subset contains 
progenitor/immature mTECs that are capable of giving rise to 
mTEChigh, as well as mTECs that are further differentiated from 
mTEChigh, termed post-Aire mTECs (19, 67). mTEC heteroge-
neity was clarified on the basis of morphological differences, 
such as Hassall’s corpuscles, ciliated columnar epithelial cells, 
and neurosecretory epithelial cells (68). Recent comprehensive 
analyses of TECs at single cell-level have revealed that mTECs 
are a more heterogeneous population than previously recognized 
(21, 69-71). Regarding post-Aire mTECs, single-cell assays for 
chromatin accessibility have revealed several distinct clusters, 
each of which is characterized by lineage-defining transcription 
factors for skin, lung, liver, and intestinal cells (71). Further-
more, these lineage-defining transcription factors detected in 
each mTEC cluster are associated with chromatin accessibility 
patterns that correspond to each cell type, including keratino-
cytes, microfold cells, endocrine cells, and tuft cells (69, 71, 72). 
These post-Aire mTECs transcriptomically mirror the extra-
thymic cells but retain the mTEC signature and are therefore 
termed mimetic mTECs (Fig. 1). Importantly, the expression 
of a model antigen in mimetic mTECs is sufficient to induce T 
cell tolerance by inducing the negative selection of self-reactive 
T cells (71). In addition, mimetic mTECs have roles other than 
the establishment of self-tolerance in T cells. Studies have shown 
that thymic tuft cells play a role in the development and function 
of iNKT2 cells (69, 73). Endocrine mimetic mTECs are involved 
in the regulation of thymic cellularity, whereas microfold mimet-
ic mTECs contribute to the generation of IgA+ plasma cells in the 
thymus (74).

The mTEClow subpopulation also includes CCL21-expressing 
mTECs. Single cell-based transcriptome profiling of TECs has 
shown that a cluster with the Ccl21a transcript has the tran-
scriptional signature of progenitor cells (21). However, whether 
CCL21+ mTECs are immature mTECs or post-Aire mature 
mTECs has not been directly investigated. Interestingly, our 
recent study revealed that CCL21-producing embryonic mTECs 
have the potential to give rise to Aire+ mTECs, and almost all 
mTECs are derived from cells that have transcribed Ccl21a, indi-
cating that embryonic CCL21-expressing mTECs have progeni-
tor activity (24). On the other hand, the differentiation potential 
of postnatal CCL21+ mTECs into Aire+ mTECs was not detected 
(24). Therefore, CCL21+ mTECs detected in the postnatal thy-
mus may be terminally differentiated cells that lack progenitor 
activity. The conversion of thymocyte-attracting mTECs into 
antigen-presenting mTECs, such as Aire+ mTECs, may contrib-
ute to the diversity in the medullary thymic epithelium. More 
importantly, the establishment of self-tolerance in T cells is reg-
ulated by mTEC subpopulations including thymocyte-attracting 
CCL21-expressing mTECs and antigen-presenting mTECs such 
as Aire-expressing mTECs and post-Aire mimetic mTECs.

THYMIC INVOLUTION
Acute thymic involution

The thymus involutes transiently or chronically. Acute thy-
mic involution is caused by several factors including radiation, 
chemotherapy, infection, and hormones ; thus, upon the removal 
of these factors, thymus size is restored. It is well known that 
sex hormones affect thymus size. An increase in androgen 
production at puberty has been implicated in thymic involution, 
whereas androgen deprivation results in the thymus size recov-
ery (75). T cell-specific disruption of the androgen receptor (AR) 
has little effect on thymus size, whereas TEC-specific disruption 
of AR results in thymic enlargement, suggesting that TECs are 
targets of androgen-driven thymic involution (76-78). It is also 
well known that the thymus undergoes involution during preg-
nancy, which may contribute to feto-maternal tolerance. Thymic 
involution during pregnancy is triggered by progesterone-in-
duced alteration of TEC function. Progesterone receptor (Pgr) 
expression is increased and the transcriptome profiles of cTECs 
are altered during pregnancy, including the expression of such 
chemokines as Ccl25, Ccl21, Ccl19, and Cxcl12, which are involved 
in the thymus seeding of T progenitors (79-81). Importantly, thy-
mic involution during pregnancy contributes to normal fertility, 
as the prevention of progesterone-mediated thymic involution 
by TEC-specific Pgr deficiency results in a reduced litter size in 
mice (81).  

Age-related chronic thymic involution
Unlike acute thymic involution, age-related thymic involution 

is a chronic process (Fig. 2). It is generally accepted that thymus 
volume is largest at puberty and decreases with age. In humans, 
however, the loss of thymus tissue begins as early as one year of 
age, decreasing at a rate of 3% yearly until middle age and 1% 
yearly thereafter (82, 83). Along with the loss of thymus tissue, 
adipose tissue replaces the thymus tissue with age (83, 84). In 
contrast to the human thymus, the increase of adipose tissue 
in the mouse thymus is not remarkable. However, thymus mass 
peaks at approximately 4 weeks of age and gradually decreases 
thereafter. Epithelial-mesenchymal transition (EMT) is involved 
in adipogenesis in the thymus, which is dependent on the in-
creased expression of PPARγ, a master regulator of adipogenesis, 
in TECs (85, 86). It has been suggested that the age-dependent 
decline of ghrelin receptor-mediated signaling induces adipogen-
esis programming, including an increased PPARγ expression, in 
the thymus, thus promoting EMT (87). Furthermore, a recent 
study has indicated that the interaction of CD147 on T cells and 
annexin A2 on TECs, triggered by TGF-β signaling, promotes 
the EMT process, and T cell-specific deficiency of CD147 delays 
thymic involution (88). Thus, the inhibition of PPARγ expression 
in TECs or CD147–annexin A2 interaction is promising as a 
means of inhibiting EMT-mediated thymic involution. 

Other studies have shown that age-related thymic inflamma-
tion is also associated with thymic involution, which may be trig-
gered by the activation of inflammasomes through age-related 
intra-thymic accumulation of lipotoxic danger signals (89, 90). 
Mice deficient in the inflammasome component Nlrp3 or Asc 
are protected from thymic involution and immune senescence 
during aging (89). 

It is also important to note that caloric restriction (CR), which 
is widely recognized to contribute to lifespan increase, prevents 
the increase of intrathymic adipogenesis and thymic involution 
in aged mice (91). CR decreases the expression of pro-EMT and 
proadipogenic regulators, such as fibroblast-specific protein-1, 
FoxC2, PPARγ, and FABP4, in the thymus of aged mice (91). The 
increase in the expression of molecules related to the prevention 
of thymic involution, including ghrelin, leptin, and Igf1, in the 
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thymus of short-term calorie-restricted mice has also been re-
ported (91, 92). A recent study on healthy humans has reported 
that a 14% reduction in calorie intake enhances thymic mass 
and function (93). It also induces transcriptional remodeling in 
adipose tissue, resulting in the upregulation of mitochondrial 
biogenesis, anti-inflammatory response, and pro-longevity ef-
fects (93). Interestingly, aged mice deficient in Pla2g7, a pro-in-
flammatory enzyme that is decreased in adipose tissue-resident 
macrophages in calorie-restricted humans, showed improved 
adipose tissue metabolism, decreased ceramide-mediated in-
flammasome activation, and protection from thymic involution 
(93). Therefore, CR-dependent metabolic regulation is another 
factor that controls age-related thymic involution. However, se-
vere CR, such as a 40% reduction, can increase susceptibility to 
infections despite its protective effect against age-related thymic 
involution (91, 94, 95).

Age-related thymic involution is associated with various im-
munological consequences. Thymic involution decreases the de 
novo generation of naïve T cells, which has been suggested to 
be involved in the decline of adaptive immune function. Elderly 
people are susceptible to microbial invasions they have not pre-
viously encountered, but maintain defenses against previously 
experienced infections ; however, the decline in immune function 
is associated with increased susceptibility to infection, increased 
cancer incidence, and poor response to vaccines in the elderly. 
Mathematical modeling revealed a strong link between the 
age-dependent decline of T cell production in the thymus and 

infectious diseases and cancers (4).  
The reduction of T cell production due to thymic involution is 

related to the production of senescent T cells that show defective 
antigen response, biased secretion of proinflammatory cyto-
kines, and resistance to apoptosis (96-98). Senescent T cells are 
also increased in chronic inflammatory environments, and the 
association of senescent T cells with inflammatory disorders, 
such as systemic lupus erythematosus, obesity-induced adipos-
ity, insulin resistance, cardiovascular diseases, and cancers 
has been reported (96, 99-101), although the direct relationship 
between thymic involution and these diseases remains to be 
elucidated. 

Aging of the thymus changes not only the production of T 
cells but also the functionality of cells in the thymus. Aged 
mouse models display dysregulated CD3 expression in thymic 
T cells, resulting in impaired TCR response, including failure of 
activation marker CD69 upregulation and reduced proliferation 
(102). Thymic DCs and macrophages show increased expression 
of proinflammatory genes with age, which are associated with 
age-related thymic inflammation (89, 90, 103). Moreover, the ex-
pression of Aire and Aire-dependent TSAs is diminished in aged 
thymic B cells, suggesting a link between aging and age-related 
autoimmune diseases (104). Importantly, it has been proposed 
that changes in thymic stromal cells contribute to age-related 
thymic involution. A previous study has demonstrated that the 
transplantation of bone marrow cells from young mice failed to 
increase de novo T cell generation in the thymus of aged recipient 

Figure 2.　Age-related thymic involution.
Age-related thymic involution is accompanied by quantitative and qualitative changes in the thymus. Thymus volume gradually decreases with 
age after puberty. During thymic involution, the number of TECs, the quality of TEC progenitors, and the de novo generation of naïve T cells 
are decreased, whereas adipose tissue is increased in the thymus. Representative factors involved in thymic involution are also shown.
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mice (105). On the other hand, another study has revealed that 
hematopoietic cells from aged mice were able to generate T 
cells equivalent to those from young mice when fetal thymus 
was transplanted into aged or young recipient mice to create a 
thymic environment in which thymic stromal cells were derived 
from the fetus whereas hematopoietic cells were derived from 
the recipient mice (106). These findings suggest that the aging 
of thymic stromal cells rather than hematopoietic cells causes an 
age-related decline of T cell generation in the thymus. Moreover, 
accumulated evidence suggests that the degeneration of TECs 
drives thymic involution. In the following section, we summarize 
the age-dependent degeneration of TECs.

TEC DEGENERATION DURING AGE-RELATED 
THYMIC INVOLUTION
Age-related decline in TEC numbers

Age-related thymic involution is accompanied by a decrease in 
the number of TECs (107). This may be mediated by age-depen-
dent changes in the transcriptional profile of molecules associat-
ed with cell proliferation. It has been reported that the activity 
of E2F3, a transcription factor critical for cell proliferation, is 
decreased in cTECs and the mTEClow subset, and the decreased 
E2F3 activity and the downregulation of cell cycle regulators 
may result in reduced cell cycle progression in these cells, thus 
contributing to the reduction in TEC cellularity during early thy-
mic involution (103). Transcription factor Myc is a key regulator 
of TECs, supporting rapid thymic development and TEC prolif-
eration during embryonic stages. Myc activity in TECs is highest 
on day 13.5 of gestation and declines thereafter (108). The forced 
expression of Myc in TECs results in the long-term maintenance 
of an embryonic-specific transcriptional program and increases 
in thymus size and thymocyte number, suggesting that the 
maintenance of Myc activity may attenuate the reduction in 
thymus size and thymic function during thymic involution (108). 
The number of TECs is also regulated by growth factors secreted 
either by TECs or by surrounding cells such as mesenchymal 
cells. It was reported that the pharmacological supplementation 
of Fgfr2b ligand Fgf7 increased the number of TECs and the ec-
topic expression of Fgf7 in TECs resulted in a sustained increase 
in the number of TECs in the aged thymus (109-111). These find-
ings suggest that growth factors also contribute to quantitative 
changes in TECs.

Age-dependent alteration of gene expression in TECs
It has been reported that Foxn1 is involved in postnatal 

thymus development by controlling both proliferation and dif-
ferentiation of TECs in a dose-dependent manner and that the 
decrease in the number of Foxn1-expressing TECs is initiated at 
an early stage of thymic involution (112-115). The overexpression 
of Foxn1 in TECs under the control of keratin-14 promoter or 
Foxn1-Cre attenuates age-related thymic involution, whereas 
the overexpression of Foxn1 under the control of keratin-5 pro-
moter does not attenuate thymic involution, although it prevents 
the decrease in TEC differentiation, particularly for mTECs 
(114, 116, 117). These studies suggest that the increased expres-
sion of Foxn1 contributes to the prevention of thymic involution 
even though the effect varies between TEC subpopulations, and 
that Foxn1-independent pathways also contribute to thymic 
involution. 

Transcriptional profiling of TECs has revealed age-related 
alterations in various molecules, including cell cycle regulators, 
growth factors, and inflammatory cytokines, during thymic in-
volution (103, 108). Furthermore, alterations of the gene expres-
sion of Wnt family members and Wnt signaling molecules have 

been shown in early thymic involution, suggesting the involve-
ment of the Wnt pathway in TEC degeneration (113, 116, 118). 
The reduction of Wnt4 expression in cTECs coincides with the 
reduction of Foxn1 expression during early thymic involution. 
An in vitro experiment has revealed that Wnt4 induces Foxn1 
expression through the Wnt / β-catenin pathway (119) ; thus, the 
reduction of Wnt4 expression may lead to a reduction of Foxn1 
expression in TECs during thymic involution. However, the 
direct link between Wn4 and Foxn1 expression during thymic 
involution is uncertain, as the disruption of the Wnt / β-catenin 
pathway in TECs has no effect on Foxn1 expression in vivo (38, 
39). 

Recent single-cell transcriptome profiling has revealed previ-
ously unrecognized gene expression signatures in TECs during 
the aging process with alterations of both subset composition 
and transcriptional states of TECs during thymic involution 
(21). It has also been reported that the primary targets of aging 
are thymic epithelial progenitor cells rather than mature TECs, 
with changes in progenitor quality (21, 111). Current evidence 
suggests that age-related quiescence or reduced differentiation 
potential of TEC progenitors leads to a reduction in TEC main-
tenance, resulting in reduced thymic function.

 Age-related alterations in TEC properties
In addition to the age-related alterations in the number and 

transcriptome profiles of TECs, alterations in TEC properties, 
including morphology, may also be involved in thymic involution. 
Morphological analysis of individual TECs has shown that the 
morphology of cTECs changed dramatically, their projections 
contracting with age ; this phenomenon was not found in mTECs 
(57). The change in cTEC morphology may be regulated by 
mTOR signaling, a cell and tissue size regulator, as pathway 
analysis of transcriptome profiles has shown that the mTOR 
signaling pathway decreased with age and increased dramati-
cally in the early stages of TEC regeneration (57). The dramatic 
change in cTEC structure may contribute to the reduction in 
thymic size during thymic involution in addition to increased cell 
death or decreased cell proliferation in aged TECs. 

In cTECs undergoing intense metabolic activity due to lym-
phocyte proliferation, a deficiency of antioxidant enzyme cata-
lase increases susceptibility to oxidative damage, resulting in 
accelerated thymic involution (120). The genetic complementa-
tion of catalase in thymic stromal cells attenuates age-related 
rapid thymic atrophy, suggesting that the levels of oxidative 
damage contribute in part to thymic involution (120). On the 
other hand, a recent study has indicated that the overexpression 
of catalase reduced autophagy in thymic stromal cells and im-
paired thymocyte clonal deletion, resulting in the increased in-
filtration of autoreactive T cells in the lung and liver (121). These 
findings suggest that low levels of catalase promote high levels of 
autophagic activity in thymic stromal cells, which are required 
for self-antigen presentation and T cell selection to regulate cen-
tral T cell tolerance. However, autophagic activity decreases with 
age and is associated with senescence in some cells and tissues 
(122). Moreover, autophagy is induced by the inhibition of mTOR 
signaling (123), which may be involved in the regulation of cTEC 
morphology (57). Future studies should elucidate how oxidative 
damage, autophagic activity, and mTOR-mediated metabolic 
regulation are linked to age-related alterations in TEC proper-
ties during thymic involution. 

 

CONCLUSION

Despite playing a critical role in immune system establish-
ment, the function of the thymus remained unknown until the 
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1960s. For a long time, the thymus was considered a vestigial 
organ that lost its original function because of size diminishment 
in adults. Consequently, the thymus was one of the last organs in 
our body for which its function was definitively established. Fur-
thermore, research on TECs lagged behind the study of T cells, 
likely owing to the challenges in isolating TECs for detailed mo-
lecular analyses. Today, it is widely accepted that the thymic epi-
thelium mainly regulates the generation of T cells in the thymus 
and that the optimal function of the thymic epithelium is im-
portant for thymus function. Thus, it is essential to understand 
the mechanism responsible for the establishment of thymus 
function by the epithelium. However, much remains unknown 
as to why the thymus undergoes the earliest age-related chronic 
involution in the body. In the human body, an enormous number 
of T cells are generated daily in the thymus, but most of them are 
eliminated by apoptosis due to thymic selection, and that pro-
cess probably consumes a large amount of energy (124). In this 
regard, thymic involution may reduce energy consumption in the 
thymus, allowing energy to be used for other biological processes, 
thereby benefitting other organs. Alternatively, it has been spec-
ulated that thymic involution reduces the risk of T cell leukemia. 
As the generation of hematopoietic cells in the bone marrow 
decreases with age, thymic involution may prevent T cells from 
residing in inappropriate intrathymic niches for long periods, 
thus preventing the creation of pro-leukemic environments in 
the thymus (125). Age-related thymic involution is involved in 
immunosenescence and is considered to be detrimental to the 
body. The development of ways to promote thymic rejuvenation 
in the elderly is anticipated ; however, it is necessary to elucidate 
the significance of age-related thymic involution to understand 
aging and treat age-dependent changes in biological function.   
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