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Abstract : Statistical iterative reconstruction is expected to improve the image quality of computed tomography 
(CT). However, one of the challenges of iterative reconstruction is its large computational cost. The purpose of 
this review is to summarize a fast iterative reconstruction algorithm by optimizing reconstruction parameters. 
Megavolt projection data was acquired from a TomoTherapy system and reconstructed using in-house statistical 
iterative reconstruction algorithm. Total variation was used as the regularization term and the weight of the 
regularization term was determined by evaluating signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and 
visual assessment of spatial resolution using Gammex and Cheese phantoms. Gradient decent with an adaptive 
convergence parameter, ordered subset expectation maximization (OSEM), and CPU/GPU parallelization were 
applied in order to accelerate the present reconstruction algorithm. The SNR and CNR of the iterative recon-
struction were several times better than that of filtered back projection (FBP). The GPU parallelization code 
combined with the OSEM algorithm reconstructed an image several hundred times faster than a CPU calcula-
tion. With 500 iterations, which provided good convergence, our method produced a 512 × 512 pixel image within 
a few seconds. The image quality of the present algorithm was much better than that of FBP for patient data. J. 
Med. Invest. 67 : 30-39, February, 2020
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INTRODUCTION
 

Helical TomoTherapy (HT) (Accuray, Sunnyvale, CA) is an 
innovative machine that delivers intensity modulated radiation 
therapy (IMRT) (1,2), and includes megavoltage (MV) computed 
tomography (CT) for image guided radiation therapy (IGRT) 
(3,4). In order to ensure precise image guidance, the image 
quality of the MVCT is crucial. In particular, detection of soft 
tissue contrast is very important for soft tissue based registra-
tion accuracy and the accuracy of adaptive radiotherapy depends 
on the accuracy of the soft tissue deformation during the daily 
treatment (5). However, in general, MVCT images are noisier 
than that of kilovoltage (kV) CT (4). Furthermore, the relative 
difference in attenuation coefficients of various soft tissues at 
MV energies is smaller than at kV energies. The smaller soft 
tissue attenuation differences lead to smaller contrast differenc-
es in MVCT and make it more difficult to register soft tissues 
accurately.

Statistical iterative reconstruction can improve the image 
quality of CT without increasing the imaging dose. Unlike con-
ventional reconstruction methods such as the filtered back pro-
jection (FBP), the iterative reconstruction methods can take into 
account a priori information including the CT geometry, photon 
statistics at the detector, and known properties of the image, in 
addition to the observed projection data (6). With such knowl-
edge-based information, the iterative reconstruction method 
can reduce noise and improve soft tissue contrast. On the other 

hand, a disadvantage of the iterative reconstruction is the large 
computational cost. Since the method iteratively calculates a 
reprojection to compare with measured projection data, the total 
calculation time can be longer. One of the easy ways to reduce 
the calculation time is to use a GPU-based iterative reconstruc-
tion (7-9), where the reconstruction time for a set of cone beam 
CT images with the iterative reconstruction algorithm could be 
shortened to 77 to 130s (about 100 times faster than with con-
ventional approaches). In addition to the GPU parallelization, 
it is possible to shorten the total calculation time by using the 
techniques such as an ordered subset expectation maximization 
(OSEM) algorithm (10). In this review, we summarize an accel-
eration method of the statistical iterative reconstruction by using 
TomoTherapy MVCT system. With utilizing a parallelized CPU/
GPU calculation, we applied several acceleration techniques 
including an adaptive convergence parameter for the gradient 
decent method and the OSEM algorithm. The performance and 
the quality of the reconstructed images of the respective methods 
were evaluated using phantom and patient data.

ETHICAL STATEMENT

The study was ethically approved by the institutional review 
board at the University of Tokyo Hospital (reference number 
3372). Written informed consent was obtained from all patients 
whose data were used in this study.

MATERIALS AND METHODS
Iterative reconstruction scheme

In this section, we briefly explain the basics of the statistical 
iterative CT reconstruction. In this study, the maximum a poste-
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riori (MAP) approach was employed as the image reconstruction 
framework (11-14). The concept of the MAP approach is to max-
imize the posteriori probability of reconstruction images with 
observed projection (or sinogram) data and a prior information 
about the image, encoded in the regularization term. Recon-
structed images can be obtained from an iterative process to 
maximize the log a posteriori probability function ln p(μ*|y) as, 

　　　μ* = μ* ln p(μ*|y)  subject to μ* > 0,　　　　(1)
where
　　　ln p(μ*|y)  ~ ln p(y|μ*) +ln p(μ*) = L(μ*) + αR(μ*) . 　(2)
Here L(μ*) = ln p(y|μ*) expresses the log-likelihood probabil-

ity function of observing the projection data set y at the given 
expectation of the image μ*, whereas αR(μ*) = ln p(μ*) stands 
for the regularization term in the optimization process with a 
hyper parameter α controlling the weight of the regularization. 
We assumed that the photon statistics at the detector obeys the 
Poisson distribution and employed the total variation (TV) as the 
regularization term. The TV term penalizes a large difference 
between the image values of a certain position and its neighbors, 
and thus reduces the noise of the image. At the same time, how-
ever, this term also reduces the sharpness of object edges in the 
image, which leads to edge blurring. Therefore, in general, the 
noise reduction must be balanced against the negative impact of 
edge blurring. We seek the appropriate value of the weight α by 
examining the trade-off.

In the optimization of Eq. (1), the gradient decent method in-
cluding the parameter adaptation was employed,

 　　　                                 ∂　　　μr
*(n+1) = μr

*(n)+ λ(n) ——— (L(μ*) + αR(μ*)),          (3) 　　　                              ∂μr
*(n)

where n is the number of the iteration step, and r means the 
index of the pixel to be reconstructed. λ(n) is the parameter which 
is adjusted to accelerate the calculation iteration step by iteration 
step as described in the following. It is noted that, as well as the 
value of λ(n), the initial image setting μr

*(0) can affect the conver-
gence speed.

Data acquisition and Computer used in reconstruction
Gammex phantom (Gammex, Middleton, WI) and Cheese 

phantom (Accuray, Sunnyvale, CA) were used in the analysis as 
well as the two patients for visual demonstration. 

The reconstruction size of the image is 512×512 with an equal 
pixel size of 1mm for the one slice. The CPU/GPU specs in the 
computer used in this study (HP customized workstation : Z840/
Z800) are shown as follows :

CPU : Xeon(R) X5690 (×2 : 12 threads) / Xeon(R) E5-2687Wv
           (×2 : 20 threads)
GPU : GeForce GTX 1080 Ti

Parameter optimization
The weight of the TV regularization term α was set as 0, 

0.0001, 0.0002, and 0.0003. The optimal values of the weight pa-
rameter were determined by estimating the signal-to-noise ratio 
(SNR), the contrast-to-noise ratio (CNR), the visual resolution, 
and the edge blurring effect. For SNR/CNR and edge blurring 
analyses, the Gammex phantom was used, whereas for visual 
resolution, the Cheese phantom was used. The region-of-inter-
ests (ROIs) used in the SNR/CNR analysis as well as their defi-
nitions and the edge blurring analysis method are mentioned in 
the supplemental material.

Although a relatively large value of λ(n) in Eq. (3) gives a rapid 
convergence, a too large value leads to non-convergence. Also 
the best value could depend on the iteration step. Therefore, we 
employed the following adaptive convergence parameter which 
depends on the iteration step : when the objective function being 
the square of difference between a reprojection and a projection 
decreases, the convergence parameter is increased as

                          λ(n+1) = λ(n) + 0.0001.   (4)
When the objective function increases, the parameter is de-

creased as
                          λ(n+1) = λ(n) - 0.0002.    (5)
The initial value of this parameter was set as 0.01. As men-

tioned, the initial image setting μr
*(0) can also affect the conver-

gence speed. In this study, homogeneous images with μr
*(0) = 0, 

0.05, and 0.1 [cm-1] were tested.

Ordered subset expectation maximization and Parallel computing
The ordered subset expectation maximization (OSEM) is a 

well-known method to accelerate the convergence of the iterative 
reconstruction algorithm (10). A basic idea of OSEM is to divide 
the original projection data into a subset of the data and to use 
the different subset in each iteration step. The easiest way to di-
vide the projection data into subset is to thin the sinogram height 
out. In the HT system, the data sampling time is 80 Hz, and it 
takes 10 sec for one rotation. Hence the sinogram height is 800. 
We thinned the sinogram height out by 1/2, 1/5, 1/10, 1/20, and 
1/40 (defined as the thinning parameter) with an equal interval 
(the sinogram height used in each iteration step is 400, 160, 
80, 40, and 20, respectively). For instance, in the 1/40 case, 40 
iterations are needed to cover the whole sinogram data, so that 
the convergence could be relatively slow. Therefore, the conver-
gence as well as its efficiency has to be verified carefully. Here, 
it should be noted that the regularization weight α in the OSEM 
method is multiplied by the thinning parameter in order to keep 
the ratio of log-likelihood function with regularization term.

 For the parallel computing, we applied openMP for CPU 
parallelization, and cuda for GPU parallelization. In the next 
section, the reconstruction speeds with the several cases of 
the number of thinning out for OSEM described above will be 
compared.

RESULT AND DISCUSSION
Total variation parameter

In order to determine the total variation parameter, the SNR 
and the CNR in the eleven insertions of the Gammex phantom 
were analyzed (see Fig. S-2 in the supplemental material for 
the reconstructed images). Figure 1 shows the results of the 
SNR and the CNR. In these results, the SNR and the CNR 
of the iterative reconstruction are normalized by the values of 
the FBP. In Fig. 1, both of the SNR and the CNR converge as 
the iteration number increases, and their values with the finite 
α are always larger than that of the FBP image. On the other 
hand, as mentioned above, noise suppression is generally accom-
panied by a trade-off of reduced image sharpness. This is seen 
in Fig. 2, where we can see that as the total variation parameter 
increases, the noise of the image decreases but the visibility of 
the small holes in the resolution plug of the cheese phantom also 
decreases. From these results, we concluded that 0.0001 < α < 
0.0002 maintains acceptable image resolution while achieving 
significant noise suppression.

Convergence parameter and initial image setting
Figure 3 shows the square of difference of the observed pro-

jection and the reprojection evaluated from the reconstructed 
image for a variety of parameters, where convergence is charac-
terized by the square of the difference between a projection and 
a reprojection in the sinogram domain. As expected, better con-
vergence is obtained with the adaptive convergence parameter 
method. With the adaptive convergence method, a similar degree 
of convergence is achieved with 500 iterations compared to 1500 
iterations using a constant convergence parameter. It should be 



32 S. Ozaki, et al.  Fast Iterative Reconstruction in MVCT

Fig 1.　Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR)

Fig 2.　Visual assessment for spatial resolutions (Cheese phantom). 

Fig 3.　Square of difference of the observed projection and the reprojection evaluated from the reconstruct-
ed image as a function of the number of iterations.
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noted that the oscillation of the square difference is also caused 
by this adaptation ; As the convergence parameter becomes 
gradually large according to the Eq. (4), the images grow away 
from the optimal values. Eventually, the square difference turns 
to increase and numerically diverge. This increasing behavior 
is however suppressed by decreasing the parameter as Eq. (5) 
when the square difference is increased. Due to this oscillation, 
we employed the reconstructed image at the minimum of the 
oscillation of the square difference.

The initial homogeneous images were set to values of 0, 0.05 
and 0.1 [cm-1], and the best convergence was obtained for 0.05 
[cm-1] in the Gammex phantom, though the difference was so 
small. This was an expected result because the reconstructed 
value of μ* in the water area was approximately 0.07 [cm-1] and 
the mean value of the reconstructed image including the air area 
was 0.026 [cm-1]. Other two phantoms with the different radius 
also gave the same result (see Table S-1 in supplemental file). 

It was found that the adaptive convergence parameter and the 
initial image setting accelerated the convergence approximately 
three times faster than that with the constant convergence pa-
rameter starting with the “zero” image. 

CPU parallelization and OSEM method
The convergence with applying the OSEM method is also 

shown in Fig. 3, where the oscillation is emphasized. The con-
vergence needs relatively larger iteration steps in the OSEM 
method, because the reconstructed image and its reprojection 
are obtained from thinned-out projection data. However, this 
apparent disadvantage is overcome by large reduction of the 
calculation time for the one iteration, thanks to the thinning. 
Eventually, the OSEM method highly accelerates the recon-
struction speed.

We found that 500 iterations were an enough number of itera-
tion in which the square of difference converges in the case of the 
thinning parameter more than 1/20, whereas more iterations 
was required in the thinning parameter of 1/40. Combining 
OSEM with CPU parallelization yielded the image reconstruc-
tion time more than 40 times faster than the original single 
CPU implementation, and more than 8 times faster than the 
CPU parallelization without OSEM. Consequently, combining 
the OSEM with CPU parallelization considerably accelerates 
the calculation.

GPU computing
In our reconstruction algorithm, the reprojection and the 

estimation processes occupy a large fraction of the calculation 
time. Therefore, we coded these parts of the reconstruction using 
CUDA GPU processing. Table 1 shows the average calculation 
time for reconstructing one image slice. Although the results 
depend on the iteration number and OSEM parameter, the GPU 
code produces an image more than 10 times faster than the par-
allelized CPU code without degrading image quality. Using the 
GPU code, a high quality image can be reconstructed at a speed 
of 3.71 seconds per slice. This large improvement in iterative 
reconstruction speed on the GPU is achieved without any deg-
radation in image quality compared to the CPU reconstructed 
images. 

Reconstructed images
Finally, the representative reconstructed images with α = 

0.0002 are shown in Fig. 4. For comparison, FBP reconstruction 
images are also shown there. In addition to the noise reduction 
seen in Figs. 4(a)-4(b), a relatively large reconstructed region 
(field of view) was achieved with the iterative reconstruction 
approach seen in Figs. 4(c)-(d). Owing to the fan beam geometry, 
information of the projection data decrease at a fringe region of 
FOV. Therefore, FBP fails to reconstruct the image at the edge 
of the body (Fig. 4-(c)). On the other hand, the statistical iterative 
reconstruction algorithm can reconstruct the image with a fewer 
projection data (the examination of the reconstruction using a 
half of projection data is given in supplemental file), and thus 
shows much better image quality at the edge (Fig. 4-(d)). From 
these image quality improvements, it can be said that we can 
clinically use the iterative reconstruction algorithm for MVCT. 

CONCLUSION

We investigated the clinical feasibility of a statistical iterative 
reconstruction method by using MVCT on a HT system. An 
image from the iterative reconstruction can be obtained within 
few seconds per image slice with a size of 512 × 512. In addition, 
the image quality of the iterative method is much better than 
that of the FBP. It can be concluded that the iterative recon-

Table 1.　Reconstruction speed [s] per one slice image with 512 × 512.

Thinning parameter 1 1/2 1/5 1/10 1/20 1/40

CPU (12 threads) 442.91 244.34 138.77 80.68 58.79 43.29

CPU (20 threads) 325.40 191.16 94.40 51.21 35.99 24.59

GPU (GTX1080Ti) 11.00 7.76 5.37 4.30 3.71 3.39

Fig 4.　Reconstructed images : (a) head region using filtered back 
projection, (b) head region using iterative reconstruction, (c) abdom-
inal region using filtered back projection, and (d) abdominal region 
using iterative reconstruction.
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struction with GPU is fast enough for clinical use, and largely 
improves the CT images. The present review focused on the 
MVCT because the impact of the iterative reconstruction was 
enhanced in its relatively poor quality of images. However, the 
present algorithm can be cooperated with all of reconstruction 
algorithms for kVCT, CBCT, and dual energy CT and the appli-
cation of the fast statistical iterative reconstruction is expected 
more and more.
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Supplemental material (Fast Statistical Iterative Re-
construction for Mega-voltage Computed Tomography)

I. NOTE 1 : REGIONS ANALYZED IN SIGNAL-TO-NOISE 
RATIO (SNR) AND CONTRAST-TO-NOISE RATIO (CNR)

The regions analyzed in signal-to-noise ratio (SNR) and con-
trast-to-noise ratio (CNR) are indicated in Fig. S-1, where the 
Gammex phantom was used with 12 materials (the solid water 
regions ⑤〜⑧ as well as water region ⑨ were removed in the 
analysis). The SNR and CNR are defined as,

=;

=;

where MROI and ROI are the mean and the standard deviation 
of signal values inside the ROI, respectively.

Fig. S-2 shows the images reconstructed by the statistical it-
erative reconstruction method with several values of the weight 
parameter α. For the comparison, the result from FBP is also 
shown.

II. NOTE 2 : EDGE BLURRING ANALYSIS

The SNR and the CNR with the finite total variation parame-
ter, αTV, are always larger than that of the filtered back projection 

(FBP) image as shown in Fig. 1 in the Technical Note. However, 
the noise suppression generally accompanies the trade-off re-
lation with the blurring. The visual evaluation was performed 
with the cheese phantom as described in the Technical Note. In 
addition, the quantitative evaluation of the blurring effect in our 
statistical iterative reconstruction was performed with the high 
density circular object in Gammex phantom by its penumbra 
analysis. The line profiles at the same location (the red dotted 
line in the upper-left panel in Fig. S-3) were obtained in each 
iteration step, and fitted by a sigmoid function. Then, the pen-
umbra width defined by the width between 20-80% values of the 
profile was evaluated. The lower panel in Fig. S-3 shows the re-
sult of the penumbra width as a function of the iteration number. 
As the iteration number was increased, the penumbra width was 
narrower. We found that the penumbra width is not so sensitive 
to the change of the total variation parameter.

III. NOTE 3: CALCULATION TIME

The calculation time of our statistical iterative reconstruction 
with a single CPU and a xed convergence parameter (λ = 0.001) 
was 5,037.9 [s] for 1,000 iterations in 512 × 512 image. This was 
reduced to 946.2 [s] by OPEN MP parallel processing with 20 
threads (the efficiency ratio was 5.3).

The efficiency of the adaptive convergence parameter depends 
on the reconstructed images; A number of the iterations required 
to produce the Mahalanobis’ distance between the sinogram and 
the forward projection, which is the same value as that obtained 

Fig. S-1 : Analysis regions in SNR and CNR.
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Fig. S-3 : Edge blurring analysis.

Fig. S-2 : Reconstructed images. αTV is the weight of the total variation in our statistical iterative reconstruction parameter. The reconstructed 
images just after 1,000 iterations are selected.
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from the 1,000 iterations with a fixed convergence parameter, 
was shown in Table S-1 with several phantoms. The best effi-
ciency was seen in the Gammex phantom whereas the worst 
efficiency was seen in the Catphan phantom. The Gammex 
phantom was larger than the Catphan phantom, and it presum-
ably affects the convergence speed. The initial image setting was 
also shown in Table S-1. The efficiency was slightly better in use 
of the μr

*(0) = 0.05. The efficiency in the Catphan phantom was 
more improved than that in the Gammex phantom, due to the 
larger air region in the Catphan phantom.

IV. NOTE 4: USING A HALF OF PROJECTION DATA

The statistical iterative reconstruction can reconstruct the 
image from a fewer projection data. The prior information (in 
this study, total variation term) plays an important role in data 
missing area in the reconstruction image. Figure S-4 shows 
the effect of the reduction of the projection data. The noise is in-
creased in the FBP algorithm, whereas the SNR is almost kept, 
even if the number of projection data is reduced in the statistical 
iterative reconstruction. This effect can also be seen in the pe-
ripheral reconstructed area, especially, with a large body (see 
Figs. S-5 and S-6).

V. NOTE 5: RECONSTRUCTED IMAGES

Figures S-5 〜 S-10 shows the comparison between FBP and 
our statistical iterative reconstruction with αTV = 0.002.

Table S-1 :  Iteration numbers with same Mahalanobis’ distance 
as that of the 1,000 iterations with a fixed convergence parameter.

Phantom μr
*(0) = 0.1 μr

*(0) = 0.05

Gammex 471 448

Cheese 540 512

Catphan 613 543

Fig. S-4 : Reconstructed images using a half of projection data.
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Fig. S-5 : Reconstructed images for lung region.

Fig. S-6 : Enlarged figures of S-5.

Fig. S-7 : Reconstructed images for pelvic region.
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Fig. S-8 : Enlarged gures of S-7.

Fig. S-9 : Reconstructed images for head region.

Fig. S-10 : Enlarged gures of S-9.


