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Abstract : Purpose : To compare data on brain tumors derived from intravoxel incoherent motion (IVIM) and ar-
terial spin labeling (ASL) imaging with multiple parameters obtained on dynamic susceptibility contrast (DSC) 
perfusion MRI and to clarify the characteristics of IVIM and ASL perfusion data from the viewpoint of cerebral 
blood flow (CBF) analysis. Methods : ASL-CBF and IVIM techniques as well as DSC examination were performed 
in 24 patients with brain tumors. The IVIM data were analyzed with the two models. The relative blood flow 
(rBF), relative blood volume (rBV) corrected relative blood volume (crBV), mean transit time (MTT), and leakage 
coefficient (K2) were obtained from the DSC MRI data. Results : The ASL-CBF had the same tendency as the per-
fusion parameters derived from the DSC data, but the permeability from the vessels had less of an effect on the 
ASL-CBF. The diffusion coefficient of the fast component on IVIM contained more information on permeability 
than the f value. Conclusion : ASL-CBF is more suitable for the evaluation of perfusion in brain tumors than IVIM 
parameters. ASL-CBF and IVIM techniques should be carefully selected and the biological significance of each 
parameter should be understood for the correct comprehension of the pathological status of brain tumors. J. 
Med. Invest. 66 : 308-313, August, 2019
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INTRODUCTION
 

Perfusion plays a vital role in brain function and is an essen-
tial part of brain metabolism. Perfusion imaging is useful for 
evaluating tumor blood supply, particularly for the differential 
diagnosis of tumor stages (1-3) and in prognosis prediction (4) 
and treatment strategy (5) planning. In addition, perfusion can 
reflect the microvascular proliferation or angiogenesis of the 
tumor (1, 6).

Three different methods have been reported to evaluate per-
fusion on MRI. The most standard method in the clinical setting 
is dynamic susceptibility contrast (DSC), which is based on 
continuous time-series measurement after injection of contrast 
medium. Another is the arterial spin labeling (ASL) technique, 
which uses radiofrequency pulses to detect blood flow. The final 
technique is the intra-voxel incoherent motion (IVIM) method, 
which uses several different strengths of motion-probing gradi-
ents, called b-values.

DSC is commonly used to evaluate and differentiate types 
of brain tumors (7) and is a fundamental technique for brain 
tumor follow-up (8-10). The DSC method provides many param-
eters related to perfusion, not only relative blood flow (rBF) and 
relative blood volume (rBV) in the cerebrum, but also the mean 
transit time (MTT) and leakage coefficient (K2), which reflect 

physiological conditions (7) such as angiogenesis and vascular 
density (8-12).

Blood flow in the carotid arteries is used as an endogenous 
tracer for perfusion imaging in the ASL technique, which is the 
main method applied in non-enhanced perfusion MRI (6, 13). 
ASL is an advanced and useful technique for assessing intra-
cranial masses and enables differentiation of brain tumor recur-
rence from its necrosis. Thus, ASL plays a role in monitoring the 
outcome and progress of tumor treatment (14).

The IVIM procedure concurrently determines perfusion and 
diffusion parameters of tumors (3, 15-20) without the need for 
contrast medium (3, 9). This method has major advantages be-
cause it is safe, repeatable, quantitative, and independent of ar-
terial input function (3, 16, 19). Although IVIM is used to assess 
head and neck tumors (5, 19), breast tumors, and other kinds of 
tumors and diseases (8, 18), its characteristics and differences 
from other perfusion MRI techniques remain unknown.

The purpose of this study was to compare the IVIM and ASL 
techniques with various DSC perfusion parameters and to clar-
ify the characteristics and differences of IVIM and ASL perfu-
sion data from those derived by the DSC method.

MATERIALS AND METHODS

The ethics committee of Tokushima University Hospital 
approved this research, and informed consent was obtained 
from all patients prior to their enrollment. From September 
2015 to March 2017, MRI examinations including ASL, IVIM, 
and DSC methods were conducted in 24 patients (15 men and 9 
women ; age, 22–93 years ; mean age, 59 ± 34 years) at Tokushima 
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University Hospital. Of the 24 patients, 13 underwent pathologi-
cal confirmation. There were 4 cases of glioblastoma, 3 of malig-
nant lymphoma, 3 of oligodendroglioma, and 1 each of anaplastic 
astrocytoma, pilocytic astrocytoma, and diffuse astrocytoma. 
The remaining 11 patients were clinically diagnosed without 
pathological examination as having 7 metastatic brain tumors, 2 
malignant lymphomas, and 2 diffuse astrocytomas.

MR IMAGING PROTOCOL

Imaging was performed using a 3-T scanner (Discovery 
750 ; GE Healthcare, Chicago, IL) with a standard 8-channel 
head coil. All MRI examinations included T2-weighted axial 
IVIM, ASL, and DSC perfusion MRI.

For the ASL method, the pseudo-continuous labeling tech-
nique was used with a 3D spiral fast spin-echo sequence en-
compassing the whole brain. The settings applied were as 
follows : 512 sampling points on 8 spirals ; field of view (FOV), 
24 cm ; repetition time, 4635 ms ; echo time, 10.5 ms ; number 
of excitations (NEX), 2 ; reconstructed matrix, 64 × 64 ; labeling 
duration, 1650 ms ; post-labeling delay, 1525 ms ; slice thickness, 
4 mm ; and number of slices, 36. The total acquisition time was 3 
min 15 s. Quantitation of ASL imaging was conducted according 
to the literature (21) and an ASL-cerebral blood flow (ASL-CBF) 
map was generated.

DSC MRI was acquired using gradient-echo echo planar 
imaging as follows : FOV, 24 cm ; repetition time, 1990 ms ; echo 
time, 30 ms ; reconstructed matrix, 128 × 128 ; NEX, 1 ; flip 
angle, 90° ; slice thickness, 4 mm ; number of slices, 20 ; and 
total acquisition time, 100 s.

We used a standard diffusion-weighted spin-echo echo pla-
nar imaging as the IVIM sequence, with 11 different b-values 
(10, 20, 30, 40, 60, 80, 100, 200, 400, 800, and 1000 s/mm2) in 
three orthogonal directions. The IVIM images were obtained as 
follows : FOV, 24 cm ; repetition time, 4000 ms ; echo time, 58.3 
ms ; slice thickness, 5 mm ; number of slices, 25 ; NEX, 1 ; and 
total scan time, 2 min 20 s.

DATA ANALYSIS

IVIM, ASL, and DSC MRI images were examined with Vit-
rea version 7 (Canon Medical Systems Ltd., Otawara, Japan) 
based on the Bayesian fitting method. DSC data were obtained 
using an automated arterial input function (7), which was used for 
deconvolution of the measured tissue tracer concentration-time 
curve.

MTT maps are described as the ratio between the rBF and 
rBV, which is called the tissue response function. The rBF map 
is the ratio between the rBV and MTT, which is the concentra-
tion–time curve. Using the numeric integration of cerebral blood 
flow values, DSC-rBF maps were created (7,10). The time to 
peak (TTP) was calculated on DSC MRI and is the time from 
the injection of the contrast medium to the peak of the signal in-
crease ; it reaches its highest concentration in specific areas of in-
terest (22). The leakage or permeability rate, which is useful for 
DSC tumor imaging, is described by the K2 (11). DSC corrected 
relative blood volume (crBV) was calculated by the compensation 
function depending on K2 values.

The IVIM data were obtained using two different models.
(a) The two-component model is expressed by :

S/S0 = fexp[-bD*] + (1-f) exp[-bD]
Where D* is the diffusion coefficient of the fast component, D 

is the diffusion coefficient of the slow component, f is the ratio 
of the fast component, b is the b-value, S is the mean diffusion 

signal intensity, and S0 is the mean signal intensity. This value 
is described as the theory of the water movement, and each map 
reports different information (23).
(b) The stretched model, which generates DDC and alpha (α), as 
non-Gaussian diffusion indices, expressed by :

S/S0 = exp {-(bc-b0) DDC} α

Where DDC is the distributed diffusion coefficient and alpha is 
the heterogeneity index (0 ≤ α ≤ 1).

The regions of interest (ROIs) were drawn in the regions of 
tumors by avoiding hemorrhagic, necrotic, and non-parenchymal 
areas using T2-weighted and contrast-enhanced T1-weighted 
imaging (Fig. 1). The ROIs were copied to the ASL, IVIM, and 
DSC perfusion MRI parameter maps. Circular ROIs with a di-
ameter of 7 mm were additionally measured on normal-appear-
ing white matter (NAWM). The mean values of the ROIs in the 
tumor were normalized by the ratio divided by the mean values 
of the ROIs in NAWM.

STATISTICAL ANALYSIS

All statistical analyses were performed with GraphPad Prism 
7.00 (GraphPad Software, Inc., San Diego, CA). Pearson’s cor-
relation was used to assess the relationship among IVIM param-
eters and ASL and DSC perfusion parameters. A p-value of less 
than 0.05 was considered to be significant.

RESULTS

The representative maps obtained in this study are shown in 
Figures 2–4. Figure 2 shows the parameter maps derived from 
ASL, IVIM, and DSC imaging of a patient with glioblastoma. 
The ASL-CBF map showed high perfusion in the tumor (Fig. 
2B), the D map showed inhomogeneous hyperintensity in the 
tumor (Fig. 2C), the D* map clearly demarcated the tumor bor-
ders as an enhancement image (Fig. 2D), and the f map clearly 
highlighted an area with high perfusion in the anterior tumor 
margin (Fig. 2E). High perfusion was detected in the center of 
the tumor in the rBF (Fig. 2G), rBV (Fig. 2H) and crBV (Fig. 2I) 
maps. The K2 showed high value in the area of the tumor tissue 

Fig 1.　Oligodendroglioma.  1. Tumor region of interest (ROI). 
2. Normal appearing white matter.
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(Fig. 2J).
Figure 3 shows various images of a patient with oligodendro-

glioma. Low perfusion was found in the ASL-CBF map (Fig. 
3B), D* (Fig. 3D), and f (Fig. 3E) maps. rBF (Fig. 3G) and rBV 
(Fig. 3H) maps showed almost the same tendency as the low 
perfusion.

Figure 4 shows a patient with malignant lymphoma. The 
ASL-CBF map (Fig. 4B) revealed the same level in the lym-
phoma as in the normal white matter. The D* (Fig. 4D), rBF 
(Fig. 4G), rBV (Fig. 4H), and crBV (Fig. 4I) maps did not show 
increased index values in the tumor. The f map showed a moder-
ately high value in the center of the tumor (Fig. 4E).

The results of a comparison of the multiple parameters de-
rived from the IVIM, ASL, and DSC methods are summarized 
in Table 1. The ASL-CBF map showed a stronger correlation 
with the DSC-rBF and crBV than the D* and f values on IVIM. 
ASL was correlated with the f map on IVIM (r = 0.414, p < 0.05), 
rBF (r = 0.667, p < 0.001), rBV (r = 0.584, p < 0.01), and crBV 
(r = 0.662, p < 0.01), but not with the K2. The D* was correlated 
with the rBV (r = 0.604, p < 0.01), crBV (r = 0.494, p < 0.05), 

and K2 (r = 0.581, p < 0.01) and the f was correlated with the 
rCBF (r = 0.44, p < 0.05) and rBV (r = 0.435, p < 0.05), but was 
only slightly correlated with the K2. The D value was strongly 
correlated with the ADC (r = 0.992, p < 0.0001) and sigma 
(r = 0.768, p < 0.0001) but these parameters were not correlated 
with any DSC parameters. The alpha on IVIM was negatively 
correlated with the ASL-CBF map (r = –0.446, p < 0.05) and the 
f on IVIM (r = –0.606, p < 0.01). The ASL-CBF map showed a 
moderate correlation with the TTP on DSC (r = 0.535, p < 0.05), 
but the correlation between the ASL-CBF and K2 was weak.

The results of various perfusion parameters compared among 
high-grade glioma, low-grade glioma, and malignant lymphoma 
are summarized in Table 2. The mean values of high-grade 
glioma derived from the ASL-CBF, f, rBF, rBV, and crBV maps 
were slightly higher than those of low-grade glioma, but there 
were no significant differences. The mean values of malignant 
lymphoma derived from the ASL-CBF, rBF, rBV, and crBV maps 
were lower than those of high-grade glioma, but the differences 
between the two groups were not significant.

 

Fig 2.　Male, aged 77 years with glioblastoma. T2 weighted image (A), Arterial spin labeling (B), D map (C), D*map (D), 
f map (E), ADC map (F), rBF (G), rBV (H), crBV (I), K2 (J).

Fig 3.　Female, aged 67 years with oligodendroglioma. T2 weighted image (A), Arterial spin labeling (B), D map (C), 
D*map (D), f map (E), ADC map (F), rBF (G), rBV (H), crBV (I), K2 (J).
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DISCUSSION

The DSC technique is the most common method for perfusion 
MRI and is based on multiple theories of arterial input function 
(24). DSC is often used for brain tumors and can usually identify 
leakage of the contrast medium in a tumor (25). The K2 param-
eter can usually be used to reflect permeability, and leakage 
correction for rBV can be conducted (11, 26) However, the con-
trast agent is harmful to patients with kidney disease due to 
the risk of renal failure. Because ASL and IVIM do not require 
contrast medium, these methods can be used as alternative DSC 
perfusion MRI techniques for patients with a contraindication to 
contrast medium. Furthermore, the IVIM method can generate 
diffusion parameters in addition to visualizing perfusion (5, 6).

In this study, the ASL-rCBF was more strongly correlated 
with the rBF and crBV on DSC than any other parameter de-
rived from IVIM. Previous studies indicated the highest correla-
tion between ASL and the DSC-rCBF, as well as between ASL 
and the DSC-rBV, and that these correlations can be affected by 
the blood flow rate (27). In addition, in this study, we found that 

Table 1.　Correlation analysis : DSC and ASL or IVIM

ASL-CBF D D* f ADC alfa sigma

ASL-CBF - -0.139 0.361 0.414* -0.071 -0.446* -0.045

rBF 0.667*** 0.015 0.382 0.44* 0.147 -0.507* 0.244

rBV 0.584** 0.084 0.604** 0.435* 0.249 -0.371 0.391

crBV 0.662** 0.018 0.494* 0.289 0.111 -0.228 0.19

MTT -0.332 0.154 0.257 0.0007 0.92 0.157 0.253

Tmax -0.419 0.122 -0.33 -0.115 0.14 0.169 0.202

TTP -0.535* -0.004 -0.205 -0.125 0.022 0.244 0.203

K2 0.344 0.153 0.581** 0.344 0.26 -0.4 0.373

tMIP 0.589** 0.034 0.523* 0.28 0.129 -0.26 0.228

Pearsoǹ s rank correlation (no.of cases = 24) **** p < 0.0001 ; *** p < 0.001 ; ** p < 0.01 ; *p < 0.05. 
ASL-CBF -arterial spin labeling, D -diffusion coefficient of slow, D* -diffusion coefficient of fast component, f -ratio of the fast 
component, ADC -apparent diffusion coefficient, rBF -relative cerebral blood flow, rBV -relative cerebral volume, crBV -relative 
cerebral blood corrected, MTT -mean transit time, Tmax -time to max, TTP -time to peak, K2 -leakage coefficient

Fig 4.　Female, aged 40 years with malignant lymphoma. T2 weighted image (A), Arterial spin labeling (B), D map (C), 
D*map (D), f map (E), ADC map (F), rBF (G), rBV (H), crBV (I), K2(J).

Table 2.　Comparison of brain tumors

HGG LGG Lymphoma

ASL-CBF 1.22 ± 13.6 1.04 ± 5.41 1.09 ± 8.93

f 2.26 ± 0.12 1.66 ± 0.35 2.56 ± 0.13

D* 0.66 ± 15.8 0.67 ± 12.36 0.80 ± 18.3

rBF 1.92 ± 11.83 1.86 ± 12.15 1.24 ± 6.16

rBV 2.18 ± 2.78 2.04 ± 1.16 1.58 ± 1.20

crBV 2.48 ± 1.00 2.28 ± 0.87 1.58 ± 0.59

MTT 1.16 ± 5.90 0.99 ± 3.03 1.06 ± 3.68

K2 2.09 ± 304.01 3.22 ± 142.02 1.72 ± 77.46

The numeric value is determined by the mean value. (mean value 
± standard deviation).
ASL-CBF -arterial spin labeling, D* -diffusion coefficient of fast 
component, f -ratio of the fast component, rBF -relative cerebral 
blood flow, rBV -relative cerebral volume, crBV -relative cerebral 
blood corrected, MTT -mean transit time, K2 -leakage coefficient, 
HGG -High-grade glioma, LGG -Low-grade glioma.
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the ASL-rCBF was slightly correlated with the K2 and strongly 
correlated with the crBV than the non-corrected rBV. Moreover, 
the ASL-rCBF showed a moderate correlation with the TTP on 
DSC. These findings suggest that the ASL-rCBF was less influ-
enced by permeability but included information on the transit 
time (6, 28, 29).

The D* and f values on IVIM included some perfusion in-
formation that correlated with the DSC-rBV, although the 
correlation was weaker than with the ASL-CBF. According to a 
previous study, the f is moderately correlated with the DSC-rBV 
(8). Similarly, another study (9) reported a moderate positive 
correlation among the f, DSC-rBF, and rBV. Our results showed 
that the f, DSC-rCBF, and DSC-rBV were identically correlated 
with each other. Based on these results, the f value can be used 
to estimate the vascularity of gliomas and may be correlated 
with the DSC-rBV on DSC imaging (1, 8, 17). Previous studies 
suggested that the f value can differentiate high- and low-grade 
gliomas (1, 8, 23), although we failed to find a significant differ-
ence in the f value according to glioma grade, probably due to the 
small number of subjects.

Our study showed that the permeability reflected by K2 had 
more influence on the D* than the f and ASL-CBF. The D* value 
is considered to contain more information on permeability due to 
pathological changes in tumors than the f (3, 6), which cannot be 
obtained on ASL perfusion data.

The correlation analysis also showed that the alpha value 
on the stretched model was correlated with the ASL-rCBF and 
rBF. This finding was considered to indicate that the ASL-CBF 
and rBF include information on the heterogeneity of blood flow, 
which deviates from the Gaussian distribution. The extent of the 
non-Gaussian distribution of blood flow may influence the values 
of the ASL-CBF and rBF. The D and DDC were not correlated 
with any perfusion parameters derived from DSC, but the alpha 
value analyzed by the stretched model was moderately correlat-
ed with the DSC-rBF. The D and DDC are independent in terms 
of perfusion information, but the non-Gaussian effect of IVIM is 
somewhat related to the rBF (16, 30).

All of the three methods have their own features. DSC MRI 
is mainly used in clinics for evaluating brain tumor. However, 
because gadolinium may cause side effects in some people, ASL-
CBF can be applicable for patients of contraindication of contrast 
medium. On the other hand, IVIM imaging simultaneously 
shows additional information concerning with blood flow such as 
permeability and diffusion parameters. 

This study has some important limitations. We included a 
small number of patients in our study and half of their tumors 
had not been pathologically identified. This may be why we 
failed to find significant differences between high- and low-grade 
glioma.

In conclusion, the ASL-CBF better reflects tissue perfusion 
than any other IVIM parameters and is possibly not influenced 
by permeability. The D* may contain more information on per-
meability than the f value. The ASL-CBF and DSC-rBF are 
slightly correlated with the non-Gaussian extent on IVIM. The 
differences in these characteristics are important to interpret 
various perfusion data using different techniques.
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