
INTRODUCTION

Wolff -Parkinson-White (WPW) syndrome is the most common
cause of ventricular pre-excitation due to rapid conduction through
the accessory atrioventricular pathway (1, 2). WPW syndrome,
which is characterized by shortened PR interval, delta wave and
prolonged QRS in electrocardiography, often leads to ventricular
fibrillation and sudden cardiac death. The molecular mechanisms
by which accessory bypass are formed have not been clarified well.
Although most patients with WPW syndrome are not evidently
inherited, a small percentage of WPW syndromes are familial and
associated with hypertrophic cardiomyopathy (3-7). The familial
WPW syndrome is inherited in an autosomal dominant mode (8).
Since a mutation in PRKAG2 gene encoding gamma2 subunit of
5’AMP-activated protein kinase (AMPK) was identified as the
cause of familial WPW syndrome, a series of mutations in PRKAG2
gene were found to be associated with familial WPW syndrome.
AMPK is a heterotrimeric serine/threonine kinase playing a key
role in regulating energy homeostasis. As its name designates, it is
activated when intracellular AMP level is increased (Fig. 1). In
other words, AMPK acts as an energy fuel sensor responding to
ATP consumption (9). AMPK consists of catalytic alpha subunit
and two regulatory beta and gamma subunits. There have been two
identified isoforms for both alpha and beta subunits and three identi-
fied isoforms for gamma subunit in mammals (10-13). The regula-
tory gamma subunit is assumed to be an AMP/ADP/ATP sensor

itself. Recent reports on the crystal structure of mammalian AMPK
support this notion (14, 15). Transcripts of PRKAG2 gene are
predominantly expressed in heart, and AMPK gamma3 subunit is
abundant in skeletal muscles in contrast (16, 17). AMPK activity is
also regulated by phosphorylation of the Thr172 residue of the
alpha subunit (18) (Fig. 1). A putative tumor suppressor kinase
responsible for Peutz-Jeghers syndrome, LKB1 and Ca2+/calmo-
dulin-dependent protein kinase kinase (CaMKK) beta were identi-
fied to be upstream kinases which phosphorylate AMPK (19-23).
Recent studies showed dephosphorylation of Thr172 residue by
protein phosphatase 2C (PP2C) was also regulated by AMP (24).
That is, AMP regulates AMPK activity via allosteric effect and
dephosphorylation. In this review, I would like to discuss mo-
lecular pathogenesis of familial WPW syndrome by considering
molecular mechanisms of glycogen regulation by AMPK.

Genetic Basis of Familial WPW Syndrome.
At least six missense mutations and one insertion in the coding
sequence of PRKAG2 gene encoding AMPK gamma2 subunit were
reported to be associated with familial WPW syndrome to date
(Table 1). Following the first causal R302Q mutation, a series of
mutations in PRKAG2 gene were found to be associated with fa-
milial WPW syndrome such as H383R, N488I or R531G (3, 25-28).
Their phenotypes consist of cardiac hypertrophy preexcitation and
abnormal conduction, but they exhibit various traits. In families
with R302Q mutation in AMPK gamma2, symptomatic onsets of
the disease were in late adolescence. On the other hand, a kindred
with R531G mutation exhibited severe arrhythmogenic disease as
early as age two (3, 27).
A typical hypertrophic cardiomyopathy in adult population
occurs due to genetic defects in contractile proteins (reviewed in
(29).) In contrast, cardiac hypertrophy dependent on the PRKAG2
mutations has been thought to occur secondary due to abnormal
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glycogen accumulation. However, this concept is challenged by a
recent finding that genetically manipulated mice harboring muta-
tions both in PRKAG2 and GYS (encoding glycogen synthase)
genes exhibited severe cardiac hypertrophy only with moderate
glycogen accumulation, in which report the authors suggested in-
volvement of alteration in insulin sensitivity(30). Myofiber disar-
ray, which is a characteristic feature of typical hypertrophic cardio-
myopathy, was not detected in samples from patients with N488I
or T400N mutation even though myocytes were enlarged, and
ventricular preexcitation is likely caused by annulus fibrosis dis-
ruption as distinct from the muscular -appearing bypass tract ob-
served in typical WPW syndrome (25, 31, 32). The pathophysi-
ological similarity to other glycogen storage disease such as
Pompe disease, which is caused by mutations in the gene encoding
for alpha 1,4-glucosidase, has been observed as early as 1970s. Left
ventricular hypertrophy and dysfunction associated with WPW
syndrome are often found in the patients with Pompe disease (33,
34). Considering cases of glycogen storage disease, glycogen accu-
mulation presumably modulate the electric properties of atrioven-
tricular fibers as accessory pathway and induce ventricular preexcita-

tion (33). That is, glycogen amassment is assumed to enhance con-
duction from atrial to ventricular muscles through expanding
atrio-ventricular muscle remnants. Furthermore, decrease in in-
tracellular pH due to glycogen may also contribute to excitability.
Taken together, the mutation in PRKAG2 gene is supposed to lead
to familial WPW syndrome mainly through secondary glycogen
accumulation.
There seems no obvious evidence demonstrating accumulation
of glycogen specifically located between atrium and ventricle.
Therefore, patients with the PRKAG2 mutations are supposed to
exhibit pathological phenotypes of the WPW syndrome only when
alterations of electrical properties happen to cause aberrant atriov-
entricular pathways. There could be inapparent patients conveying
the mutations.
Dysregulation of ion channels may play a part in the abnormal
electrical conductions. AMPK has been suggested to control a
number of cardiac channels including sodium, potassium, and
chloride channels. For instance, overexpression of constitutively
active AMPK mutant was shown to slow inactivation of cardiac
sodium channels, hH1, and prolong action potential duration by
using human embryonic TsA201 cells, which could be consistent
with QT interval elongation often observed in the WPW patients
(35).
AMPK is also associated with another aberrant cardiac glycogen
metabolism in human. In addition to familial WPW syndrome, het-
erozygous R531Q missense mutation in PRKAG2 gene was found
in patients with sporadic fatal congenital heart glycogenosis (36).
As there was no mutations found in genes encoding phosphorylase
kinases, which are the most common reasons for glycogen meta-
bolism-related disorders, AMPK gamma2 R531Q mutation is sup-
posed to cause the cardiac glycogen storage disease. Patients with
the R531Q mutation died of hemodynamic and respiratory failure
secondary to hypertrophic nonobstructive cardiomyopathy, but
also had WPW-like conduction anomalies. In contrast to other
PRKAG2 missense mutations described above, R531Q mutation
gives rise to more severe phenotype, ie. rapid fatal nonlysosomal
cardiac glycogenosis of fetal symptomatic onset (36). In addition,
another Y487H mutation in PRKAG2 associated with moderate car-
diac hypertrophy and an extremely short PR interval was reported
even though its activity and effect on glycogen accumulation were
not mentioned (37).

Fig. 1
Molecular mechanisms of AMPK activation.

Table1.
Mutation in human PRKAG2 gene responsible for familial WPW syndrome and related diseases

mutation type location disease reference
G100S missense point mutation exon 3 familial WPW (96)
R302Q missense point mutation exon 7 familial WPW (3)
H383R missense point mutation exon 11 familial WPW (26)
T400N missense point mutation exon 11 familial WPW (25)
N488 I missense point mutation exon 14 familial WPW (25)
R531G missense point mutation exon 15 familial WPW (27)
350Leu351 insertion exon 9 familial WPW (26)
R384T missense point mutation exon 11 fatal infantile glycogenosis (associated with phosphorylase kinase deficiency) (97)
K485E missense point mutation exon 14 left ventricular hypertrophy, de novoWPW (98)
Y487H missense point mutation exon 14 moderate cardiac hypertrophy (37)
E506K missense point mutation exon 14 mild left ventricular hypertrophy (99)
E506Q missense point mutation exon 14 severe hypertrophic cardiomyopathy (100)
H530R missense point mutation exon 15 childhood-onset hypertrophic cardiomyopathy (101)
R531Q missense point mutation exon 15 fatal congenital glycogenosis (36)
S548P missense point mutation exon 16 hypertrophic cardiomyopathy, mild skeletal muscular glycogenosis (102)

2 L. Miyamoto Pathogenesis of Familial WPW syndrome.



Therefore, mutation in AMPK gamma2 is closely related to aber-
rant cardiac glycogen accumulation although the impacts of each
mutation on AMPK activity have not been clarified well. Most of
mutations related to the cardiac disorders found in the PRKAG2
gene are located in or between the cystathione beta synthase
(CBS) domains, which are recognized as functional domains inter-
acting with AMP, ADP or ATP (Fig. 2). Thus, these mutations are
supposed to change the balance of accessibility or affinity for AMP
and ATP, which might be one of the reasons for complicated
effects on the AMPK activity.
Differentiated induced-pluripotent stem cells (iPS cells) estab-
lished from patients conveying N488I mutation recapitulates WPW
phenotypes including AMPK activation, glycogen accumulation
and hypertrophy, which were ameliorated by TALEN-directed
genome editing(38). Adeno-associated virus-9 -mediated CRISPR/
Cas9 gene editing was shown to prevent cardiac disorders in trans-
genic mice with PRKAG2 H530R mutation(39). Genome editing-
based gene therapy should be a promising way to treat inherited
diseases including familial WPW.
It is interesting that many mutations arising naturally in human
associated with familial WPW syndrome have been found espe-
cially in PRKAG2 gene. As for human skeletal muscle, AMPK ab-
normality had not been found until recent report that R225W muta-
tion of human PRKAG3 gene was associated with increased glyco-

gen content and decreased triglyceride in vastus lateralis muscle
(40). R225W mutation caused 2-fold increase in AMPK activity
partially purified from the biopsied muscle (40). A screening co-
hort study which sequenced the PRKAG3 locus of more than
1000 non-diabetic white population for SNPs found two SNPs (rs
692243, rs6436094), however, which was not associated with pre-
diabetic traits such as insulin sensitivity or insulin secretion but
with serum LDL cholesterol and apolipoprotein B-100 levels (41).
More recently, the rs692243 SNP was suggested to be associated
with sporadic WPW in Taiwanese population, instead (42). Similar
results were reported as for SNPs in PRKAA2 gene encoding alpha2
subunit of AMPK in Caucasian female population (43). No single
SNP in AMPK components have ever found to be associated with
diabetic traits but two Japanese groups reported associated haplo-
types (41, 43-46).

Significance of Cardiac AMPK
The physiological roles of AMPK have been established over the
last two decades. In skeletal muscle, AMPK is prominently acti-
vated in response to exercise or electrical stimulation (47-50).
AMPK phosphorylates and inactivates acetyl -CoA carboxylase
(ACC) in response to muscle contraction (47-52). The consequent
reduction in malonyl -CoA facilitates fatty acid oxidation by releas-
ing inhibition of carnitine/palmitoyl -CoA acyl transferase1 (CPT1).
Pharmacological activation of AMPK increases GLUT4 transloca-
tion and glucose uptake activity similar to the effect of muscle con-
traction in a wortmannin- insensitive manner (53, 54). Further-
more, the AMPK activation mimics the metabolic effects of muscle
contraction metabolome-widely (55, 56).
Interestingly, physical exercise activates AMPK not only in
skeletal muscle but also in heart (57). However, AMPK appears to
play more important roles during and after ischemia rather than
responding to myocardinal contraction in heart, in contrast to
skeletal muscle. Cardiac AMPK harbors relatively high basal activity
but there is still a room for more enhancement of its activity in
spite of the continual contraction. AMPK activity in isolated work-
ing hearts were elevated after ischemia followed by aerobic reperfu-
sion in a phosphorylation-dependent manner (58-60). There were
no failure in cardiac function, hypertrophy, or fibrosis found in
transgenic mice cardiac and skeletal muscle-specifically express-
ing a kinase dead form of AMPK alpha2 or skeletal muscle specifi-
cally expressing another dominant negative form of AMPK alpha2.
But these mice showed failure in facilitation of glucose uptake,
glycolysis, and fatty acid oxidation after ischemia and postischemic
reperfusion with a lower ATP content (61, 62).
In addition, an activator of AMPK, 5-aminoimidazole-4 -carbox-
amide-1-beta-D-ribonucleoside (AICAR, acadesine) was under
development in clinical trials for the prevention of ischemia-reper-
fusion injury. A meta-analysis of five randomized clinical trials of
AICAR in patients with coronary artery bypass graft surgery demon-
strated 26% reduction in myocardial infarction necessary for left
ventricular assistant device and cardiac death (63). AICAR treat-
ment reduced the severity of acute myocardial infarction following
to reperfusion and showed 4.2- fold decrease in 2-year mortality
(64). AMPK is plausible to play an important protective role in
limiting damage associated with ischemia and reperfusion in the
heart.

Animal Models of Familial WPW Syndrome with AMPK mutants
A series of mouse models of familial WPW syndrome harboring
mutant AMPK gamma2 subunit have been reported. Cardiac-
specific transgenic expression of R302Q mutant of PRKAG2 in mice
model has demonstrated the typical phenotype of WPW syndrome
such as ventricular preexicitation, development of AV accessory
pathway and cardiac hypertrophy (65). AMPK activity in the mutant
heart was 2.5- fold decreased and excessive cardiac glycogen

Fig. 2
PRKAG2 mutations identified in the patients of familial WPW and its
related diseases.
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amassment was observed.
Arad et al. generated transgenic mice overexpressing the N488I
mutant of PRKAG2 gene product with a cardiac-specific alpha
myosin heavy chain promoter. Glycogen was 30-fold accumulated
in the hearts of these animals and left ventricular hypertrophy, ven-
tricular preexcitation, sinus node dysfunction and accessory atrioven-
tricular conducting pathways were developed. They observed
higher AMPK activity in these mice than in wild type transgenic
mice (31). No changes in the activities of such enzymes related to
glycogen metabolism as glycogen phosphorylase, phosphorylase
kinase, glycogen branching or debranching enzymes were de-
tected in the heart of these transgenic mice (66).
Transgenic mice with specific overexpression of R531G mutant
of AMPK gamma2 in heart were also generated and exhibited
cardiac hypertrophy, impaired contractile function, electrical con-
duction abnormalities, and marked glycogen accumulation alike
by four weeks of age. At this stage, AMPK activity isolated from
hearts of the transgenic mice was abolished but could be restored in
the presence of a recombinant upstream kinase, CaMKK beta. Inter-
estingly, at one week of age, there was no detectable evidence of a
cardiac phenotype, and cardiac AMPK activity in transgenic mice
was comparable to that in control mice. (67)

Molecular Mechanism of Metabolic Regulation of Glycogen by
AMPK. ~Lessons from Skeletal Muscles~
Glycogen is a branched polymer of glucose, which serves not
only as an energy repository but also as a modulator of the enzyme
activity (68-71). The major deposits of glycogen are skeletal muscle
and liver in mammals, however, most of other tissues including
cardiac and smooth muscle, kidney, brain and adipose tissue can
synthesize and accumulate glycogen (72). Recent data have pro-
vided a good deal of evidence showing significance of AMPK on
glycogenmetabolism.
Glycogen synthesis and degradation were regulated by rate-
limiting enzymes, glycogen synthase (GS) and glycogen phospho-
rylase (GP) respectively. An early enzymatic study showed Ser7
residue of GS and Ser1018 and Ser1020 residues of phosphorylase
kinase which lies upstream of GP were directly phosphorylated by
AMPK in a cell - free assay system(73).
As for glycogenolysis, AICAR stimulation was reported to acti-
vate GP in isolated rat soleus muscle (74). However, GP activa-
tion by AICAR stimulation in isolated rat myocardium was inde-
pendent of AMPK activation (75). Furthermore, AICAR stimula-
tion did not alter GP activity nor glycogen content in isolated rat
epitroclearis muscle, while a metabolite of AICAR, ZMP was
demonstrated to activate GP directly (74, 76). Therefore, AICAR-
induced GP activation is supposed to be due to allosteric effect of
ZMP, and AMPK does not seem to be active on glycogenolysis.
It has been quite controversial on the relation between AMPK
and glycogen synthesis. In skeletal muscles, some earlier studies
showed that chronic administration of AICAR on animals resulted in
glycogen accumulation (77-79). These phenomena were seem-
ingly good evidence that AMPK also mediates exercise- induced
facilitation of glycogen resynthesis. Aschenbach et al. demon-
strated that acute activation of AMPK alpha2 after AICAR admini-
stration in gastrocnemius muscle caused reduction in GS activity in
white fibers whereas GS activity in red fibers was conversely in-
creased. They also made a contradictory observation that AICAR
stimulation had no effect on GS activity in isolated muscles (80). In
contrast, we and others showed that GS inactivation by AICAR
treatment consistently with the observation that GS can be directly
phosphorylated by AMPK (76, 81, 82).
A natural arising mutation in AMPK was first found in the skeletal
muscle of Hampshire Pig (83). R225Q missense mutation in
PRKAG3 geneencoding gamma3 subunit of AMPK was revealed to
be the cause of Rendement Napole (RN-) phenotype of which

skeletal muscle was about 70% more abundant in glycogen. This is
also the first direct evidence revealing the close relation between
AMPK and glycogen metabolism. AMPK activity in the skeletal
muscle of RN- pig was reported as one-third of that of wild type
(83). Skeletal muscle-specific transgenic mice overexpressing
AMPK gamma3 with R225Q mutation are murine models of RN- of
which skeletal muscular glycogen were 1.5- to 2- fold increased
(84, 85). In addition, 199V haplotype of porcine PRKAG3 gene was
reported to be associated with higher meat glycogen content than
199I haplotype (86). These earlier findings are contradicting as
both of the chronic AICAR administration which should activate
AMPK repeatedly and the AMPK mutation whose activity is puta-
tively lower than wild type brought about the same result, muscle
glycogen accumulation.
R70Q missense mutation in AMPK gamma1, which is a ubiqui-
tously expressing isoform, corresponds to R302Q of gamma2 and
R225Q of gamma3. Specific overexpression of the gamma1 R70Q
mutant in skeletal muscle also led to glycogen accumulation (87).
AMPK gamma1 R70Q mutant was revealed to be constitutively
active by in vitro study (16, 88). 2 - fold AMPK activation was ob-
served in these mice consistently. In addition, biochemical charac-
terization of the recombinant gamma2 R531Q mutant showed an
enhanced basal activity and increased phosphorylation of the alpha
subunit with reduction of binding affinities for the AMP and ATP
(36). Activity in the AMPK complex containing R225Q mutant of
gamma3 was higher than that in WT (84). Taken together, AMPK
containing these mutants should be more active than WT in nature.
High cellular glycogen content was reported to exert an inhibitory
effect on AMPK activity (81, 89). Thus, it is plausible that the de-
crease in AMPK activities observed in some reports may be secon-
dary due to the glycogen accumulation.

Why active mutants of AMPK induce glycogen accumulation
even though AMPK plausibly inactivates GS? One possible reason is
vigorous glucose uptake caused by AMPK activation which should
supply substrates for glycogen synthesis. A report that glycogen
was increased independently of GS or GP activity in transgenic
mice whose skeletal muscles overexpressing glucose transporter,
GLUT1 supported this notion. These mice resulted in 7- to 8- fold
increase in glucose uptake and 10-fold amassment of glycogen in
skeletal muscles even though GS activity was lower than that of
control mice (90). Besides, transgenic mice overexpressing human
GLUT4 in tissues expressing endogenous murine GLUT4 includ-
ing heart also showed higher glucose uptake activity and induced
cardiac glycogen amassment (91, 92). Luptak et al. analyzed the
carbohydrate metabolism in heart -specific N488I AMPK alpha2
transgenic mice by using [13C]- labeled glucose as a metabolic
tracer (93). Isolated N488I mutant expressing hearts time-depen-
dently stored glycogen labeled with [13C] during perfusion of [13C]-
glucose within 2 hrs. [13C]- labeled lactate output was also in-
creased. These observations agree with the notion that AMPK
activation-derived glucose uptake enhances glycogen accumula-
tion. In addition, after 19 day of age, cardiac expression and
activity of UDP-glucose pyrophosphorylase, which catalyses UDP-
glucose generation, in the transgenic mice were markedly in-
creased. The progressive decrease in phosphorylation-dependent
GS activity was suggested, but total amount of GS protein and
glucose-6-phosphate, which is an allosteric activator of GS, were
increased at 19 and 49 day of age. These results strongly suggested
that chronic AMPK activation increases glycogen storage not only
by enhancing glucose influx but also by amplifying glycogen syn-
thesis systems. A series of more recent studies clearly supported
this hypothesis. Knock- in mice expressing mutant GS insensitive
to glucose-6-phosphate exhibited 80% lower insulin-stimulated
glycogen synthesis and reduction in glycogen levels in skeletal
muscles, suggesting glucose-6-phosphate dominantly promotes
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GS activation (94). Furthermore, AICAR-stimulated glycogen syn-
thesis was completely abolished in these mice (95). The increase in
glucose influx by AMPK activation is suggested to stimulate glyco-
gen synthesis by allosteric GS activation mediated by glucose-6-
phosphate and enrichment of the substrate (Fig. 3). The causal
mutations of familial WPW syndrome are supposed to lead to car-
diac glycogen accumulation alike. Furthermore, WPW pheno-
types including excessive accumulation of cardiac glycogen, ex-
cept for hypertrophy as aforementioned, were strikingly amelio-
rated when mice with PRKAG2 N488I mutation were crossed with
the GS mutant mice insensitive to glucose-6-phosphate, strongly
supporting the idea (30).

CONCLUSION

Recent advances of genetic and metabolic investigations on fa-
milial WPW syndrome and AMPK have been revealing the mo-
lecular mechanism connecting the mutations in PRKAG2 gene and
the cardiac aberrancy. However, little is known what kind of mecha-
nisms is involved in the abnormal atrioventricular conduction
caused by glycogen accumulation. Further studies focused on the
effects of cardiac AMPK or glycogen accumulation on the regula-
tion of ion channels may provide us more profound understanding.
Studies on familial WPW syndrome extended our knowledge about
glycogen regulation by AMPK although it is a relatively rare inher-
ited disease. Rapid advance in genome editing technology has been
lowering technical hurdles to gene therapy. However, if not to use
gene therapy, AMPK and enzymes related to glycogen regulation
will be potent therapeutic targets of familial WPW syndrome.
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