INTRODUCTION

Endoscopic surgery for lumbar disorders was introduced in the 1990s. The two main forms at present are micro-endoscope-assisted tubular surgery and percutaneous full endoscopic surgery. As shown in Figure 1, microendoscope-assisted tubular surgery, such as microendoscopic discectomy (MED) (1, 2), was developed in an attempt to reduce the invasiveness of the traditional Love’s procedure (i.e., interlaminar decompression). MED is usually performed under general anesthesia and involves dissection of the paravertebral muscles via a skin incision of approximately 16 mm. This technique has recently been applied to decompression surgery for patients with lumbar spinal stenosis (LSS). Although a steep learning curve is required, decompression has been achieved using the MED technique (3, 4).

The more recent technique of percutaneous full endoscopic surgery is an adaptation of the percutaneous nucleotomy (PN) procedure devised by Hijikata (5), and it can be performed under local anesthesia. Hijikata did not use a spinal endoscope; therefore, it was unable to introduce a cannula into a herniated mass in the neural canal. Percutaneous techniques were subsequently tried (6-10), with single-portal endoscopic discectomy being developed around the end of the last century (8-10). This technique became known as percutaneous endoscopic discectomy (PED) and was initially indicated for herniated nucleus pulposus (HNP) (8-10). PED was first performed using a transforaminal (TF) posterolateral approach...
similar to that used in Hiihjikata’s PN technique (8-10). Because the TF-PED procedure requires only a small skin incision (approximately 8 mm) and damage to the paravertebral muscles is minimal, it is considered to be the least invasive. PED can also be performed with the advent of specialized instrumentation such as the ultra-thin high-speed drill and trephine reamer for use in the small working space of an endoscopic system, PED can now be used in decompression surgery for LSS (lumbar spinal stenosis). Here, we review the state-of-the-art PED techniques for LSS, describe a novel decompression technique using transforaminal PED, and propose the new concept of ventral facetectomy.

LITERATURE REVIEW

Type of the lumbar spinal stenosis and PED

There are three types of LSS: intervertebral foraminal stenosis, lateral recess stenosis, and central canal stenosis (13).

1) Intervertebral foraminal stenosis

The exiting nerve root is impinged due to the foraminal stenosis, and TF-PED can be used to enlarge the intervertebral foramen. Under local anesthesia, the superior articular process can be partially drilled and the exiting nerve can be decompressed; if needed, disc bulging can be managed simultaneously.

2) Lateral recess stenosis

This disorder is amenable to IL-PED, particularly if unilateral, and is not technically demanding for surgeons experienced in using this approach for HNP.

3) Central canal stenosis

Most recently, central canal stenosis has also been treated using IL-PED, whereby bilateral decompression can be performed with the unilateral approach.

Decompression surgery using TF-PED

The most important benefit of this approach is that surgery is possible under local anesthesia. Nowadays, patients undergoing spinal surgery are typically older, given the steadily increasing longevity of populations worldwide. Surgical procedures that can be performed under local anesthesia are preferred in the elderly population, given the common comorbidities in this age group.

Foraminal stenosis compressing the exiting nerve root is potentially a good indication for TF-PED because the technique enables access to the neural canal through the intervertebral foramen. In a report underscoring the importance of foraminal stenosis as a cause of residual symptoms in patients with failed back surgery, Yeung and Gore described 30 patients treated with TF-PED technique in whom foraminaloplasty could be performed under local anesthesia (14). The mean visual analog score in these patients improved from 7.2 preoperatively to 4.0 postoperatively and the Oswestry Disability Index from 48% to 31%. As a complication, transient dysesthesia occurred in 4 patients in the early postoperative period. Further, Ahn et al. reported excellent or good clinical results in at least 80% of 35 patients with foraminal stenosis treated by TF-PED technique (15). Two patients in their series also experienced transient dysesthesia postoperatively.

Foraminoplasty has also been reported to be effective for safe removal of an intra-canalaric herniated mass (16, 17). With this procedure, the intervertebral foramen can be enlarged, allowing safe removal of the herniated mass without damage to the exiting nerve root (16, 17), which is one of the recognized complications of TF surgery (18, 19). Essentially, this technique involves using a high-speed burr to remove the excessive bone. Henmi et al. (17) reported their experience with foraminaloplasty using the high-speed burr followed by ventral epiduroscopic observation (20, 21). After foraminotomy, the cannula could be inserted safely into the ventral epidural space in the neural canal. The ventral epidural space could then be observed and the extruded fragments inspected. There has also been a report by Li et al. of a 92.5% success rate in 134 consecutive patients who underwent foraminaloplasty using a trephine reamer followed by TF-PED (22).

As already mentioned, TF-PED is a challenging procedure in patients with an HNP at L5-S1 and a high iliac crest; thus, IL-PED was developed for these patients (12, 13). In 2016, Choi et al. clearly described the usefulness of foraminaloplasty in patients with a high iliac crest (23). Lee et al. (24) and Abe et al. (25) also used foraminaloplasty to obtain safe access to the neural canal and remove an HNP at the lumbosacral junction, with outcomes as successful as those reported by Choi et al.

Figure 2 shows the results for a patient treated at our institution in whom the foram at L5-S1 was enlarged by foraminaloplasty and an intracanalicular HNP was removed. The endoscopic view clearly shows decompression of the S1 nerve root (arrows) traveling just beside the S1 pedicle (Figure 3).

Decompression surgery using IL-PED

Decompression of both the lateral recess and the central stenosis is possible with this approach. The IL technique was first used for unilateral decompression of lateral recess stenosis (26) and subsequently for bilateral decompression of lateral recess stenosis and central stenosis using the unilateral approach (27, 28). In 2007, Ruetten et al. reported a study in which they compared the outcome of IL-endoscopic decompression with that of microsurgical decompression in 161 patients (26). After 2 years of follow-up, the clinical outcome was similar in the two groups, but the complication and revision rates were significantly reduced in the endoscopic group.

In 2011, Komp et al. reported their clinical outcome data for 74 patients who underwent bilateral decompression using the IL-PED system with a unilateral approach (27). After 2 years of follow-up, 51 patients (70.8%) had either no leg pain or leg pain that was almost completely resolved and 16 (22.2%) had either occasional pain or pain that was greatly reduced. However, there were complications in this series, including postoperative transient dysesthesia (n=5), transient urinary retention (n=2), injury to the dura (n=2), and increased parasthesia (n=1). In 2015, the same group reported a study comparing conventional microscopic decompression and full endoscopic posterior decompression in which the clinical outcome was similar in both groups but again with a lower complication rate noted in the endoscopic group (28).

This technique was pioneered in Japan by Professor Akira Dezawa in Teikyo University Mizonokuchi Hospital. He performed the first posterior decompression using the PED system in patients with the lumbar spinal stenosis in 2009 (29) and developed an ultra-thin high-speed drill specifically for use with this system (30), first for lateral recess stenosis and then for central stenosis. Decompression surgery can now be performed for both pathologies using the IL-PED approach, now known as percutaneous endoscopic laminectomy.

CADAVERIC STUDY

This investigation was approved by institutional review board of our institution. We used a fresh cadaveric model (male, 68 years old) to assess the technical feasibility of transforaminal ventral facetectomy including foraminal and lateral recess decompression. The left L4-5 level was selected. With the cadaver in a prone
position, an 8 mm skin incision was made posterolaterally on the back 9 cm away from the midline. In accordance with the inside-out procedure (8, 9, 31), the cannula was first inserted into the disc at L4-5 through the safety triangle. After the selected discectomy (8, 9), the cannula was withdrawn to just outside of the disc, where the lateral aspect of the facet joint could be seen endoscopically. Figure 4 shows an endoscopic view of the superior articular process (SAP) at L5. Note the foraminoplasty was commenced using an ultra-thin high-speed drill. The SAP was hypertrophic and occupied the intervertebral foramen, causing the foraminal stenosis seen on a three-dimensional computed tomography (CT) scan (Figure 5, left). The SAP was drilled and shaved completely, so that both foraminal and lateral recess decompression could be performed endoscopically at the same time. The completely decompressed L5 nerve root (yellow arrows) is clearly visible traveling just around the pedicle (red arrows) in Figure 6. The lateral wall of the L5 nerve root is completely resected.

Figure 5 shows a three-dimensional CT scan before and after the ventral facetectomy. After surgery, the SAP was completely removed, such that the foraminal stenosis was resolved (Figure 5, right). Sagittal and axial CT scans through the facet joint are shown in Figure 7. After surgery, the SAP at L5 was completely removed, with enlargement of the lateral recess. These CT scans clearly demonstrate that lateral recess decompression with simultaneous foraminal decompression would be possible using the TF-PED approach.
DISCUSSION

In this report, we have reviewed state-of-the-art percutaneous full endoscopic surgery for LSS and described the main TF and IL approaches used for this procedure. The IL approach has been reported to be very useful for decompression of central and/or lateral recess stenosis (25-28). However, this approach basically requires general anesthesia (sometimes epidural anesthesia) because the nerve roots need to be handled and decompressed during surgery. The TF approach, however, can be performed for foraminal stenosis under local anesthesia (14-17), and this has been of greatest benefit in TF-percutaneous full endoscopic surgery (8, 9, 31, 32). The elderly often have comorbidities (32) rendering them at high risk for general anesthesia, so surgeries that can be done under local anesthesia are preferable in this age group. However, based on anatomic considerations, only the TF approach for foraminal stenosis has been discussed in the literature (14-17).

In practice, during foraminoplasty via the TF approach, we have sometimes noticed that the traversing nerve root is decompressed at the same time as the exiting nerve, due to wide removal of the superior facet joint on the cranial side (Figure 3). This clinical experience led us to the concept of transforaminal ventral facetectomy, which includes simultaneous decompression of both foraminal and lateral recess stenosis.

Before embarking on clinical application of this technique, we attempted a left ventral facetectomy at the L4-5 level in a fresh cadaver model. As shown in Figures 5 and 7, the superior articular process of L5 was completely removed, so that decompression of the foraminal and lateral recess stenosis could be completed. Three-dimensional CT demonstrated that the intervertebral foramen could be fully widened, allowing complete foraminal decompression as well as decompression of the exiting L4 nerve (Figure 5). Further, an axial slice through the disc showed that the lateral recess was enlarged after ventral facetectomy and the traversing L5 nerve root was successfully decompressed (Figure 7). Thus, this cadaveric study shows that ventral facetectomy is technically possible using the percutaneous endoscopic system via a TF-PED approach. The fact that it can be performed under local anesthesia makes it potentially very useful for treating elderly patients who, because of frequent comorbidities such as lung, heart, and kidney dysfunction, may not be indicated for procedures performed under general anesthesia.

We anticipate one possible shortcoming using this technique. As part of this study, we additionally performed a partial pedicu- lotomy (see Figure 7), which decreased the facet contact area. Completely removal of this contact area by ventral facetectomy would result in segmental spinal instability, so this technique would require meticulous surgical planning with regard to the amount of facet joint to be removed.

In conclusion, we have reviewed state-of-the-art decompression surgery using the percutaneous endoscopic system for the lumbar spinal stenosis. We have also introduced the concept of transforaminal ventral facetectomy, which enables simultaneous decompression of foraminal and lateral recess stenosis. The feasibility of this surgical technique has been demonstrated in a fresh cadaver model.
REFERENCES


Figure 7: Sagittal and axial CT scans through the facet joint before and after ventral facetectomy in a cadaver model. After the surgery, the SAP of L5 was completely removed, so that the lateral recess was enlarged. These CT scans clearly demonstrate that simultaneous lateral recess and foraminal decompression would be possible by the TF-PED approach.


K. Sairyo, et al. Transforaminal ventral facetectomy