
1. INTRODUCTION

The regulation of gene expression without changes in the DNA
sequence is governed by epigenetic mechanisms. Epigenetic mecha-
nisms contribute to numerous biological processes, not only in
higher eukaryotes but also in single cell eukaryotes. For example,
epigenetic mechanisms control mating type silencing in yeast,
temperature-dependent vernalization in plants, position-effect vari-
egation in insects, and germline imprinting and X-chromosome in-
activation in mammals. DNA methylation, histone modification,
non-coding RNA and chromatin remodeling are the major players
in epigenetic regulation (1). Among them, DNA methylation and
histone modification have been most extensively studied.

DNA methyltransferases (DNMTs) catalyze methylation at the 5’
carbon of a cytosine (5mC) next to a guanidine (CpG). Mammals
have two types of DNMTs. DNMT1 acts as a maintenance meth-
yltransferase that catalyzes the methylation of hemimethylated
DNA sequences, while DNMT3 acts as a de novo DNA methyl-
transferase that catalyzes the methylation of unmethylated DNA
sequences (2). Recently, the ten-eleven translocation 1-3 (Tet1-3)
proteins have been found to possess DNA hydroxylase activity
toward 5mC. The Tet1-3 proteins can convert 5mC into 5-hy-
droxymethyl cytosine (5hmC), which is considered to be an inter-
mediate in the process of active DNA demethylation (3).

The nucleosome is the fundamental unit of chromatin, and con-
sists of 147 base pairs (bp) of DNA wrapped around a core his-
tone octamer (two each of H3, H4, H2A and H2B) (4). The tail
regions of the core histones are susceptible to a variety of covalent
modifications, including acetylation, phosphorylation, methylation,
and ubiquitination (5). These modifications can be reversed by the
corresponding deacetylase, phosphatase, demethylase and deu-
biquitinase. Distinct combinational sets of histone modifications
are considered to regulate unique biological outcomes. This con-
cept is referred to as the “histone code hypothesis” (6).

The structure of the epigenome can be modulated by environ-
mental changes. For example, vernalization in flowering plants

requires the methylation of specific histone arginine and lysine resi-
dues (7). In animals, the nutrition status during development can
lead to locus-specific changes in the epigenome. For instance,
methyl donor supplementation of pregnant female mice induces the
CpG hypermethylation of a specific allele in their offspring (8). On
the other hand, the activities of chromatin modification enzymes
are dependent on high-energy metabolites as cosubstrates. DNMTs
use S -adenosyl methionine as the methyl donor. The kinases, ace-
tyltransferases and methyltransferases acting on histones require
ATP, acetyl -CoA and S -adenosyl methionine as the phosphoryl,
acetyl and methyl donors, respectively. Chromatin modification
enzymes sensitively monitor environmental and metabolic events,
and thus function as sensors of changes in these conditions (9).

In mammals, a single fertilized egg differentiates into more than
two-hundred different types of cells during development. Epige-
netic mechanisms essentially contribute to this process, by regu-
lating gene expression in spatial and temporal manners. Sex de-
termination is the genetic or environmental process by which the
gender (male or female) of an individual is established, in a sim-
ple binary fate decision. A gene called sex determining region Y
chromosome (Sry) was identified as a candidate for a mammalian
sex determining gene (10). The introduction of a genomic frag-
ment containing Sry generated male mice, although they were
chromosomally female mice, indicating that Sry is necessary and
sufficient for testis induction (11). The SRY protein is the found-
ing member of the SOX (SRY-related HMG box) family of tran-
scription factors. Sry expression is restricted to a subset of gonadal
somatic cells from embryonic day (E) 10.5 to E12.5 in mice. This
spatial and temporal Sry regulation is critical for testis differentia-
tion (12, 13). In this review, I will particularly focus on the epige-
netic regulation of Sry expression.

2. ROLE OF DNA METHYLATION IN MAMMALIAN
SEX DETERMINATION
1) DNA methylation profiles of the Sry promoter in developing
mice embryos

Sixteen CpG sites exist in the 4.5-kb 5’ - flanking region of the
mouse Sry locus (14). A sodium bisulfite sequencing analysis
revealed that the CpG sequences of the Sry promoter region
were hypermethylated in E8.5 embryos, in which Sry was not yet
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expressed. However, this region became hypomethylated specifi-
cally in the XY gonad at E11.5, while it was still hypermethylated in
the other tissues where Sry was not expressed (14). Thus, an in-
verse relationship exists between the Sry expression levels and the
extent of DNA methylation. Hypomethylation of promoter region
DNA is generally associated with actively transcribed genes. The
cause and effect relationship between the expression of Sry and the
hypomethylation of its promoter region is currently unclear, and
deserves further study.

2) Do Gaadd45 family proteins contribute to the DNA demeth-
ylation of the Sry locus?

The GADD45A, B, G proteins are a family of stress-response
proteins. GADD45 mediates diverse cellular processes, such as
DNA repair, apoptosis, cell cycle arrest and senescence (15, 16).
The GADD45 proteins also function in gene activation, by promot-
ing DNA demethylation and MAPK signaling. The Gadd45 proteins
are considered to recruit DNA repair proteins to specific loci, in
order to initiate DNA demethylation (17).

Gadd45g -mutant mice display complete male- to- female sex re-
versal. Sry expression is reduced in the undifferentiated gonads of
Gadd45g -mutant embryos, suggesting that GADD45G positively
regulates Sry expression (18, 19). Unexpectedly, a bisulfite se-
quencing analysis revealed that the CpG sequences within the Sry
promoter region of undifferentiated gonadal somatic cells were still
hypomethylated in the Gadd45g -mutant embryos. These facts sug-
gested that GADD44G activates Sry expression in a different man-
ner than by the CpG demethylation of Sry. Alternatively, GADD45
activates Sry in a different manner other than CpG demethylation
of Sry. GADD45G binds and activates MAP3K4. The activated
MAP3K4 sequentially activates p38MAPK, resulting in the direct
or indirect activation of GATA4, which is implicated in the regula-
tion of Sry expression (Figure 1) (20).

3. ROLE OF HISTONE METHYLATION IN MAMMAL-
IAN SEX DETERMINATION

Histone methylation was previously considered to be an irrevers-
ible modification that could only be removed by histone exchange
or dilution during replication. The identification of the Lysine-
specific demethylase 1 (LSD1) and Jumonji C (JMJC) histone de-
methylase enzyme families resulted in a quite different viewpoint
of the regulation of histone methylation (21, 22).

The methylation of histone H3 lysine 9 (H3K9) is a hallmark for
transcriptionally silenced heterochromatin, and is conserved from
fission yeast to mammals (23, 24). JMJD1A (also called TSGA/
JHDM2A/KDM3A), an enzyme that demethylates H3K9, plays an
important role in gene activation in spermiogenesis and metabo-
lism (25-28). Recently, Kuroki et al. reported that XY mice defi-
cient in JMJD1A exhibit male- to- female sex reversal. The devel-
opment of external and internal genitalia in XY Jmjd1a -mutant mice
was variable. Approximately 20 % of the XY Jmjd1a -mutant mice
had male external genitalia, and the others had ambiguous or fe-
male external genitalia (Figure 2). Sry expression is perturbed in
Jmjd1a -mutant XY gonads at E11.5 (29). Three different approaches
were employed to determine the critical step(s) in the testis -devel-
oping pathway controlled by JMJD1A. First, a microarray analysis
revealed that the expression levels of the known positive regula-
tors of Sry were not compromised by the Jmjd1a mutation. Second,
a rescue of the sex-reversal phenotype was attempted by experi-
mentally restoring Sry function, by crossing the Hsp-Sry transgenic
mouse line (30) into the Jmjd1a -deficient background. Conse-
quently, the forced expression of the Hsp-Sry transgene rescued
the sex-reversal phenotype of the Jmjd1a -deficient mice. Finally,
a chromatin immunoprecipitation analysis revealed that JMJD1A
accumulates on the Sry locus in undifferentiated XY gonads, and
mediates its H3K9 demethylation. Taken together, these results
revealed that JMJD1A specifically contributes to the Sry activation

Figure 1. Epigenetic machineries and transcription factors involved in Sry regulation in mice
Sry expression is defined through the cross-talk between its epigenetic status (left) and the functions of specific transcription factors (right).
JMJD1A erases H3K9 methylation, which is a hallmark of transcriptionally suppressed chromatin (29). DNA demethylation may be one of the
epigenetic mechanisms responsible for Sry expression (14). CBX2, a subunit of Polycomb-repressive complex 1, is involved in Sry regulation,
although the molecular mechanism remains to be determined (33). GADD45G activates the GATA4 transcription factor via the activation of p38
MAPK (18, 19). Recently, it was demonstrated that the SIX1/SIX4 transcription factors control Sry expression, by positively regulating Fog2 and
Ad4BP/Sf1 expression (46). The roles of the other transcription factors in Sry expression have been discussed in another review (47).
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step during the testis -development pathway, by directly catalyzing
H3K9 demethylation (Figure 1) (29).

4. ROLE OF POLYCOMB GROUP PROTEINS IN MAM-
MALIAN SEX DETERMINATION

The polycomb group (PcG) proteins were identified as molecules
required for maintaining the repressed state of homeotic genes in
Drosophila (31). The functions of the PcG proteins are highly con-
served, from Drosophila to mammals. In vertebrates, the PcG pro-
teins assemble into two distinct complexes, polycomb-repressive
complex 1 (PRC1) and polycomb-repressive complex 2 (PRC2).
The PRC complexes at least partially exert their functions through
chromatin modification, because both of the PRC complexes pos-
sess histone modification activities. PRC1 and PRC2 catalyze the
ubiquitination of H2AK118 and the methylation of H3K27, respec-
tively (32).

Chromobox homolog 2 (CBX2) (also referred to as M33) is one
of the four core subunits of PRC1. Cbx2 -mutant mice suffer from
multiple defects, such as anterior vertebral shifting (33) and adre-
nal and spleen hypoplasia (34). In addition, the gonads of both
sexes were hypoplastic, and the XY gonad displayed male-to- female
sex reversal (33). Microarray analyses revealed that the expres-
sion levels of not only Sry and Sox9 , but also the genes encoding
transcription factors essential for gonadal development, such as
Lhx9 , SF-1 (also called Ad4BP) , Dax-1 , Gata4 , Arx, and Dmrt1 , are
affected in Cbx2 -mutant gonads (35). Considering the fact that
Gata4 is required for Sry expression (20), CBX2 may regulate Sry
expression indirectly, by positively regulating Gata4 expression.

In embryonic stem (ES) cells, the genes required for gonadal de-
velopment, such as Lhx9 , SF-1 , and Gata4 , are negatively regu-
lated by PRC complexes. Chromatin immunoprecipitation analyses
indicated that these genes were the direct targets of both PRC1
and PRC2 in ES cells (36, 37). Interestingly, these genes were posi-
tively regulated by CBX2 in developing gonads (35). Further stud-
ies will be required to understand the molecular mechanisms un-
derlying the contributions of CBX2 and the CBX2-containing PRC1
complex to the activation of these genes in gonadal cells.

5. PERSPECTIVES

Two major types of sex-determination exist in the animal king-
dom : genotypic sex determination (GSD) and environmental sex
determination (ESD). In the latter case, the sex is determined af-
ter fertilization, depending on environmental cues. Temperature-
dependent sex determination (TSD) is a form of ESD observed in
some fish and reptiles (38). An indispensable role of epigenetic
mechanism for ESD has been demonstrated recently. The Euro-
pean sea bass employs a unique polygenic system of sex determi-
nation, in which genetics and temperature contribute equally to
sexual fate (39). In this species, exposure to high temperature dur-
ing a certain larval period increased the DNA methylation of the
Cyp19a1 gene, encoding an aromatase that converts androgens
into estrogens. The acquisition of DNA hypermethylation at this
locus resulted in the induction of masculinization, even in chromo-
somally female fish (40). These findings constitute the first molecu-
lar examination of an epigenetic mechanism that mediates the ef-
fects of temperature on sex ratios in vertebrates.

Dysregulation of the epigenetic machineries is associated with
several human diseases (41, 42). Disorders of sex development
(DSDs) are congenital conditions, in which chromosomal, gonadal,
and/or anatomical sex is atypical (43). Mammals employ GSD,
where sex is determined at conception due to the genetic differ-
ences of zygotes. However, it seems likely that the epigenetic
machineries also play important roles in the regulation of sex-
determining genes in mammals, as reviewed in this article. In
addition, more than half of the human DSDs cannot be explained
by alterations in the characterized genes required for sex determi-
nation and gonadogenesis (44). Collectively, alterations of the epi-
genetic machineries and/or epigenetic states may be responsible
for the onset of DSDs. Accordingly, the CBX2 gene mutation was
found in a human exhibiting a male-to- female sex reversal pheno-
type (45). Given the accumulating studies in the epigenetics re-
search area, many new insights will emerge to reinforce the links
between epigenetic mechanisms, sex determination, and gonado-
genesis.
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