
1. INTRODUCTION

The type IIa renal sodium-dependent phosphate
(Na/Pi) co-transporter Npt2a is the most important
regulator of inorganic phosphate (Pi) homeostasis
through reabsorption of Pi in renal brush border
membrane (1). Beck et al. reported that Npt2a gene

ablation leads not only to hypophosphatemia but
also to hypercalciuria and high levels of 1,25-dihy-
droxyvitamin D3 [1,25(OH)2D3] and skeletal abnor-
malities. Also it is reported that renal Npt2a gene
ablation induces renal calcification due to abnormali-
ties of mineral metabolism (2, 3). Moreover, it is
known that renal Npt2a expression is regulated by
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dietary Pi and hormones such as 1,25(OH)2D3, para-
thyroid hormone (PTH), fibroblast growth factor-
23 (FGF-23), dopamine, thyroid hormones, and glu-
cocorticoids (2, 3). In addition, we have reported
that 3,3’,5-tri-iodothyronine (T3), a known regula-
tory factor for hepatic cholesterol metabolism, in-
duces hypocholesterolemia and hyperphosphatemia,
and we revealed that T3 transcriptionally up - regu-
lates the Npt2a gene in renal proximal tubular cells
(4). In contrast, hyperphosphatemia has emerged as
a risk factor for vascular calcification and cardiovas-
cular mortality (5). It has been also reported that
hyperphosphatemia is associated with left ventricu-
lar hypertrophy and progression of chronic kidney
disease (CKD) (6, 7).

Cholesterol is an important component of hor-
mones and cell membranes in tissues and organs of
the human body (8). On the other hand, it is also
well known that an excessive cholesterol intake in-
duces fatty liver, hypercholesterolemia and athero-
sclerosis (9, 10). In blood, cholesterol is carried by
lipoproteins, chylomicrons (CM), very low density
lipoprotein (VLDL), low density lipoprotein (LDL)
and high density lipoprotein (HDL). These lipopro-
teins vary not only in density but also in their func-
tions. After dietary cholesterol was absorbed by the
small intestine, it is then incorporated into the CM
particle and delivered to the liver. VLDL cholesterol
is formed in the liver and transported to the blood
stream where it converted to LDL cholesterol and
utilized in certain organs through LDL receptor.
Excess cholesterol is then returned to the liver with
HDL to be eliminated later in bile as bile acid. An
elevated plasma LDL cholesterol level induces athe-
rosclerosis, while high HDL cholesterol reduces risk
of atherosclerosis (11-13). To get to understand
these functions, it is necessary to measure plasma
concentration of lipoproteins. In addition, it has been
shown that abnormalities in lipid metabolism, espe-
cially cholesterol, are the major contributing factor
in the induction of atherosclerosis (14, 15). It has
been reported that higher serum Pi levels are asso-
ciated with an increased risk of cardiovascular dis-
ease (CVD) in individuals free of CKD and CVD
(16). Our recent studies also showed that dietary
and serum Pi influence the progression of athero-
sclerosis in vivo and in vitro (17, 18). However, the
effect of Pi on cholesterol metabolism remains to be
elucidated.

In this study, we investigated the effects of Npt2a
gene ablation on cholesterol metabolism in mice,
and revealed that Npt2a gene ablation increased

plasma total, LDL and HDL cholesterol levels and
lose the responses to high cholesterol diet.

2. MATERIALS AND METHODS

2.1. Animals

Male and female Npt2a+/- mice were purchased
from The Jackson Laboratory (Bar Harbor, ME,
USA) and crossing male and female Npt2a+/- yielded
the Npt2a-/- mice, as described previously (2). Wild-
type mice and Npt2a-/- mice were genotyped by PCR
amplification of genomic DNA. PCR genotyping to
confirm the Npt2a gene ablation was performed by
using a thermal cycler (SHIMAZU, Kyoto, Japan)
with a sense primer (5’ -TGCCCAGGTTGGCACG-
AAGC-3’) located in exon 4 of Npt2a and either an-
tisense primer 1 (5’ -AGTCCTGTCCCTGCCTGCA-
3’) located in exon 6 of Npt2a or antisense primer 2
(5’ -TGCTACTTCCATTTGTCACGTCC-3’) located
in the introduced neor gene cassette (2). Mice were
maintained on 12 h light-12 h dark cycles (8 : 00-
20 : 00) with free access to water and food. Mice
were maintained under pathogen-free conditions
and handled in accordance with the Guidelines for
Animal Experimentation of the Tokushima Univer-
sity School of Medicine.

2.2. Diets

The experimental diets were based on the AIN-
93G diet (Oriental, Osaka, Japan), with or without
2% cholesterol were prepared. The mice were ran-
domly divided into two experimental groups of five
mice each and were fed one of the two different
diets for 12 days. The animals were allowed to eat
ad libitum and given free access to distilled water.
At the end of the experiment, all mice were sacri-
ficed, and blood and liver samples were collected
for analysis.

2.3. Quantification of hepatic total cholesterol and
triglyceride (TG)

0.6-1.0 gram of frozen liver tissue from each ani-
mal was homogenized in a mixture of chloroform
and methanol (2 : 1), and used for lipid extraction as
described previously (19). Hepatic total cholesterol
and TG levels were determined using the T - choles-
terol E-test Wako and Triglyceride E-test Wako
kits, respectively (Wako Pure Chemical Industries,
Osaka, Japan).
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2.4. Biochemical analysis

Plasma levels of Pi and calcium were determined
using the Phospho C-test Wako, Calcium test Wako,
respectively (Wako Pure Chemical Industries, Osaka,
Japan). Plasma levels of TG and total cholesterol,
CM, VLDL, LDL, and HDL cholesterol were deter-
mined using LipoSEARCH��, a high-sensitivity lipo-
protein profiling system (Skylight Biotech, Akita,
Japan).

2.5. Statistical analysis

Data are presented as means�S.E.M. To assess
the effect of genotype or diet, data were compared
using student’s t test. Statistical significance was de-
termined by ANOVA followed by post-hoc testing
using the Tukey-Kramer procedure for multiple
comparisons and the Student’s t test for effect of
diet in hepatic cholesterol accumulation. Differences
were considered significant for P value less than
0.05. Statistical tests were performed using Statcel2
(OMS Ltd., Saitama, Japan).

3. RESULTS

3.1. Effects of high cholesterol diet in Npt2a-/- mice

We elucidated whether Npt2a gene ablation and
dietary cholesterol affect plasma lipid and lipoprotein
profiles in mice. In Npt2a-/- mice, plasma total, LDL
and HDL cholesterol significantly increased than in
WT mice. In WT mice, high cholesterol diet mark-
edly increased plasma levels of total cholesterol,
CM, VLDL, LDL and HDL cholesterol. However, in
Npt2a-/- mice, high cholesterol diet increased only
plasma VLDL cholesterol levels. Moreover, high
cholesterol diet-fed Npt2a-/- mice showed significant
decrease of plasma CM and VLDL cholesterol levels
when compared with high cholesterol diet-fed WT
mice (Fig. 1). These data suggest that Npt2a gene
ablation induces hypercholesterolemia and loses re-
sponse to a high-cholesterol diet.

3.2. Liver weight and hepatic cholesterol accumu-
lation in Npt2a-/- mice

We found that plasma Pi levels in Npt2a-/- mice
were significantly lower than in WT mice, but were
not lower in Npt2a-/- mice with high cholesterol
diet (Table. 1). As well as previous report (2), we
also confirmed that plasma 1,25(OH)2D levels were
significantly increased in Npt2a-/- mice (data not
shown). There were no differences in body weight,

total chow consumption or plasma calcium and
TG levels, between any of the groups (Table.1, 2).
Although we could not find any differences in liver
weight and hepatic lipid accumulation between WT
and Npt2a-/- mice, high cholesterol diet increased
significantly liver weight in WT mice, but not in
Npt2a-/- mice. Furthermore, the quantification of he-
patic total cholesterol and TG levels revealed that
high cholesterol diet significantly induced hepatic
cholesterol accumulation in Npt2a-/- mice, but its
hepatic cholesterol levels tended to be lower than
that of WT mice. In addition, high cholesterol diet-
induced hepatic TG accumulations also tended to
be lower in Npt2a-/- mice than WT mice (Table. 2).

Figure 1 Effect of high cholesterol diet on plasma levels of cho-
lesterol in Npt2a-/- mice
Diet with (black bars) or without (white bars) 2% cholesterol,
were given to mice for 12 days. Levels of plasma cholesterol
levels were measured as described in the Materials and Methods
section. (A) Total cholesterol, (B) CM cholesterol, (C) VLDL
cholesterol, (D) LDL cholesterol, (E) HDL cholesterol. Values
are means�SEM. n = 5 mice per group, *p�0.05.
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4. DISCUSSION

In the present study, we examined the effects of
Npt2a gene ablation on plasma lipid and lipopro-
tein profiles and response to a high cholesterol diet.
We first observed that Npt2a-/- mice had hypophos-
phatemia and hypercholesterolemia. Indeed, it has
been previously reported that plasma Pi levels and
total cholesterol levels have negative correlation in
the black sea bream Sparus Macrocephalus (20).
This may indicate that plasma levels of Pi can affect
plasma total cholesterol levels. In Npt2a-/- mice, high
cholesterol diet did not increase plasma levels of
total, LDL and HDL cholesterol. Reversely, high
cholesterol diet-induced plasma levels of CM and
VLDL cholesterol were lower in Npt2a-/- mice than
WT mice. These lipoproteins that contain apolipo-
protein, cholesterol, TG and phospholipid are syn-
thesized and metabolized in the intestine and liver
(8, 21). Pi deficiency in Npt2a-/- mice might affect
the synthesis of lipoproteins and maintain their me-
tabolism. Therefore, our findings could indicate that
Npt2a gene ablation induces hypercholesterolemia
and inhibits the ability of response to a high choles-
terol diet.

Our results showed no significant differences in
hepatic lipid accumulation, within all groups. How-
ever, in Npt2a-/- mice, the hepatic cholesterol and
TG accumulation was decreased to lower levels than
in WT mice with or without high cholesterol diet.

We previously reported that renal Pi homeostasis is
regulated by thyroid hormones (4). In fact, hyper-
cholesterolemia is found in patients with hypothy-
roidism and resistance to thyroid hormone (22).
However, it has not been clarified whether hypo-
phosphatemia and high cholesterol diet affect on
plasma levels of thyroid hormones. Liver X receptor
(LXR) is known as a nuclear receptor to regulate
cholesterol metabolism and lipid biosynthesis (23).
In Npt2a-/- mice, LXR mRNA expressions were sup-
pressed significantly by 70% than in WT mice (data
not shown). Interestingly, recent study showed that
LXR-activating ligands decreased plasma Pi levels
and renal and intestinal NaPi transporters including
Npt2a, Npt2c and Npt2b (24). These data might sug-
gest that dietary cholesterol can regulate renal and
intestinal Pi homeostasis through LXR, and hypo-
phosphatemia by Npt2a gene ablation induce imbal-
ance of cholesterol and lipid metabolism through
suppression of hepatic LXR alpha gene expression.
Moreover, Xie et al. reported Pi restriction diet
could change glucose metabolism in liver (25, 26).
It has been reported that the Npt2b known as intes-
tinal Pi transporter is highly expressed in the intes-
tine, lung and liver (27). Indeed, we demonstrated
real-time quantitative PCR analysis and observed a
higher hepatic Npt2b mRNA expression in Npt2a-/-

mice (data not shown). These data suggest that
hepatic Pi levels might be changed in Npt2a-/- mice
to regulate the cholesterol metabolism. However,

Table 1 Plasma levels of Pi, Ca and TG.

WT Npt2a-/-

mg/dl +Chol +Chol

Pi 8.01�0.30 6.47�0.25 5.72�0.44b 6.19�0.62

Calcium 8.05�0.27 7.97�0.15 7.25�0.15 7.68�0.18

TG 26.11�7.00 17.32�2.69 23.85�4.68 14.56�2.40

Values are means�SEM. n = 5 mice per group, p�0.05. a effect of diet, b effect of genotype

Table 2 Body and hepatic weights, total chow consumption, and hepatic lipid accumulation.

WT Npt2a-/-

+Chol +Chol

Final body weight (g) 23.03�0.15 23.31�0.32 22.91�1.30 22.90�1.22

Total chow consunption (g) 41.79�0.09 46.16�0.09 42.55�0.11 44.51�0.10

Liver weight (g) 0.95�0.01 1.25�0.07a 1.07�0.06 1.08�0.07

Hepatic total cholesterol (mg/g liver) 1.78�0.40 3.93�0.78 0.95�0.16 2.98�0.4 a

Hepatic TG (mg/g liver) 7.51�1.90 12.40�2.35 4.79�1.43 8.01�1.17

Values are means�SEM. n = 5 mice per group, p�0.05. a effect of diet, b effect of genotype
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further study is required to clarify the relationship
of Pi and cholesterol metabolism in liver.

FGF-23 is known as a critical regulator of Pi
homeostasis and renal Npt2a gene expression.
Shimada et al. reported that FGF-23 deficient mice
had abnormalities of mineral metabolism including
hyperphosphatemia, increased plasma 1,25(OH)2D
levels, hypercholesterolemia and decreased plasma
TG levels (28). Therefore, these results also sug-
gest that the abnormality of Pi metabolism affects
lipid homeostasis. As the relationship between the
plasma levels of Pi and FGF-23 is well reported pre-
viously (1-3) ; the effects of high cholesterol diet on
plasma FGF-23 levels should be considered in the
further studies to understand the mechanism of
hypercholesterolemia induced by Npt2a gene abla-
tion.

In conclusion, we firstly reported hypercholes-
terolemia and the response to a high cholesterol
diet in Npt2a-/- mice, and suggest that Npt2a gene
ablation plays an important role in the control of
cholesterol homeostasis.
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