CASE REPORT

Usefulness of transcatheter arterial embolization prior to excision of hypervascular musculoskeletal tumors

Seiji Iwamoto¹, Shoichiro Takao², Hayato Nose¹, Yoichi Otomi¹, Mitsuhiko Takahashi¹, Toshihiko Nishisho¹, Junji Ueno², Natsuo Yasui³, and Masafumi Harada¹

¹Department of Radiology ; ²Department of Radiologic Science and Technology ; and ³Department of Orthopedics, the University of Tokushima, Tokushima, Japan

Abstract: The objective of this study was to evaluate the usefulness of transcatheter arterial embolization prior to surgical excision of musculoskeletal tumors. We reviewed the records of nine patients (3 females and 6 males) who received arterial embolization prior to excision of musculoskeletal tumors in our hospital from December 2009 to April 2010. We evaluated tumor region, size, histopathology, feeding artery, embolic material, and blood loss during surgery. We compared the actual amount of intraoperative bleeding with arterial embolization to estimated amounts of bleeding without embolization predicted by three orthopedic surgeons. Arterial embolization was performed on the same day or within 5 days before surgery. Operations were performed as planned in all patients without serious complications. The amount of intraoperative bleeding was 35-4200 mL and there was significantly less bleeding with arterial embolization compared with the estimated amounts (p<0.01). Our results show that arterial embolization prior to resection of hypervascular musculoskeletal tumors reduces the amount of bleeding during surgery and contributes to patient safety. J. Med. Invest. 59: 284-288, August, 2012

Keywords: musculoskeletal diseases, therapeutic embolization, interventional radiology

INTRODUCTION

Tumor embolization therapy was first used with renal cell carcinomas (1) and has since been widely employed in medicine and interventional radiology. Recently, this method has been used for controlling pain due to bone metastasis and management of tumors which do not respond to traditional treatment. To reduce hemorrhage during surgery, arterial embolization is performed preoperatively. We evaluated the usefulness of transcatheter arterial embolization prior to surgical excision of musculoskeletal tumors.

MATERIALS AND METHODS

We reviewed the records of 9 patients (3 females and 6 males) who received arterial embolization prior to excision of musculoskeletal tumors in our hospital from April 2009 to December 2010 (Table 1). Arterial embolization was performed selectively using different types of microcoils (pushable coils and detachable coils) and gelatin sponge (GS) particles with a coaxial technique against the feeding vessels. The endpoint of embolization was disappearance or sufficient reduction of tumor stain. We
evaluated tumor location, size, histopathology, feeding artery, embolic material, and blood loss during surgery.

We statistically compared the actual amount of intraoperative bleeding with the estimated amounts of bleeding if arterial embolization was not performed by t-test. Estimates were made after excision individually by three orthopedic surgeons with a specialty in musculoskeletal tumors, based on pre-operative CT, MR and angiography images (Table 2).

RESULTS

Arterial embolization was performed on the same day or within 5 days before surgery and surgery was performed as planned (total tumor extraction) in all patients without serious complications. Intraoperative bleeding was 35-4200 mL (average: 1236 mL) (Table 3, Fig. 1-4).

The actual amount of bleeding with arterial embolization was significantly \((p<0.01)\) lower than the estimated amounts (average: 2430 mL).

Table 1: Patient features, tumor location and size

<table>
<thead>
<tr>
<th>Case No.</th>
<th>Age</th>
<th>Sex</th>
<th>Location</th>
<th>Tumor size(cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>70</td>
<td>F</td>
<td>Thoracic vertebra</td>
<td>3×2×2</td>
</tr>
<tr>
<td>2</td>
<td>80</td>
<td>M</td>
<td>L. gluteal region</td>
<td>14×8×10</td>
</tr>
<tr>
<td>3</td>
<td>68</td>
<td>M</td>
<td>L. femoral region</td>
<td>5×4×7.5</td>
</tr>
<tr>
<td>4</td>
<td>46</td>
<td>M</td>
<td>Thoracic vertebra</td>
<td>3×4×3</td>
</tr>
<tr>
<td>5</td>
<td>47</td>
<td>F</td>
<td>L. shoulder</td>
<td>13×10×10</td>
</tr>
<tr>
<td>6</td>
<td>80</td>
<td>M</td>
<td>R. ilium</td>
<td>5×4×6</td>
</tr>
<tr>
<td>7</td>
<td>36</td>
<td>M</td>
<td>R. retroperitoneal region</td>
<td>6×6×8</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>F</td>
<td>L. humerus</td>
<td>15×13×13</td>
</tr>
<tr>
<td>9</td>
<td>78</td>
<td>M</td>
<td>R. femoral region</td>
<td>8×6×15</td>
</tr>
</tbody>
</table>

Table 2: Estimated blood loss (mL)

<table>
<thead>
<tr>
<th>Case No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. A</td>
<td>2000</td>
<td>1500</td>
<td>450</td>
<td>5000</td>
<td>650</td>
<td>6000</td>
<td>800</td>
<td>5000</td>
<td>800</td>
</tr>
<tr>
<td>Dr. B</td>
<td>3000</td>
<td>600</td>
<td>300</td>
<td>1500</td>
<td>1000</td>
<td>2000</td>
<td>800</td>
<td>5000</td>
<td>2000</td>
</tr>
<tr>
<td>Dr. C</td>
<td>1200</td>
<td>2000</td>
<td>500</td>
<td>2500</td>
<td>2000</td>
<td>10000</td>
<td>2000</td>
<td>10000</td>
<td>1500</td>
</tr>
<tr>
<td>Average</td>
<td>2067</td>
<td>1367</td>
<td>417</td>
<td>3000</td>
<td>1217</td>
<td>6000</td>
<td>1200</td>
<td>5167</td>
<td>1433</td>
</tr>
</tbody>
</table>

Table 3: Interventions and outcomes

<table>
<thead>
<tr>
<th>Case No.</th>
<th>Embolic materials</th>
<th>Interval from embolization to operation</th>
<th>Actual bleeding (mL)</th>
<th>Average of estimated bleeding (mL)</th>
<th>Pathological diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gelatin sponge (GS) particles</td>
<td>5 days</td>
<td>920</td>
<td>2067</td>
<td>Metastatic adenocarcinoma</td>
</tr>
<tr>
<td>2</td>
<td>GS particles, Microcoils</td>
<td>2 days</td>
<td>765</td>
<td>1367</td>
<td>Foreign body granuloma and hematoma with amyloid deposition</td>
</tr>
<tr>
<td>3</td>
<td>GS particles Microcoils</td>
<td>1 day</td>
<td>35</td>
<td>417</td>
<td>MFH</td>
</tr>
<tr>
<td>4</td>
<td>GS particles Microcoils</td>
<td>1 day</td>
<td>1400</td>
<td>3000</td>
<td>Metastatic adenocarcinoma</td>
</tr>
<tr>
<td>5</td>
<td>GS particles Microcoils</td>
<td>The same day</td>
<td>350</td>
<td>1217</td>
<td>Metastatic sarcoma</td>
</tr>
<tr>
<td>6</td>
<td>GS particles Microcoils</td>
<td>The same day</td>
<td>4200</td>
<td>6000</td>
<td>Metastatic renal cell carcinoma</td>
</tr>
<tr>
<td>7</td>
<td>GS particles Microcoils</td>
<td>1 day</td>
<td>460</td>
<td>1200</td>
<td>MPNST</td>
</tr>
<tr>
<td>8</td>
<td>GS particles Microcoils</td>
<td>The same day</td>
<td>2650</td>
<td>5167</td>
<td>Chondroblastoma</td>
</tr>
<tr>
<td>9</td>
<td>GS particles Microcoils</td>
<td>The same day</td>
<td>340</td>
<td>1433</td>
<td>Liposarcoma</td>
</tr>
</tbody>
</table>

MFH: malignant fibrous histiocytoma

MPNST: malignant peripheral nerve sheath tumor
Figure 1 : Case 5. A 47-year-old woman with a metastatic tumor of the left shoulder (uterine leiomyosarcoma). Tumor size was $13 \times 10 \times 10$ cm; a : enhanced CT, b : MPR coronal view.

Figure 2 : Case 5. DSA of right external iliac artery; a : pre-embolization, b : postembolization. GS particles and microcoils were used. The actual amount of intraoperative bleeding was 350 mL and the average estimated amount of bleeding was 1217 mL.

Figure 3 : Case 9. A 78-year-old man with a liposarcoma of the right femoral region. Tumor size was $8 \times 6 \times 15$ cm; a : MRI CE Fat Sat T1WI axial & sagittal view, b : enhanced CT.
DISCUSSION

Usefulness of embolization

One of the earliest reports of selective transcathe-
ter arterial embolization for musculoskeletal bone
tumors was in 1975 when the technique was em-
ployed to reduce perioperative blood loss. Reports
of transcatheater arterial embolization prior to exci-
sion of musculoskeletal tumors are rare but useful-
ness is reported in every case (2-7). Location, size,
and vascularity of the tumors vary widely. Operative
time and blood loss during surgery also vary widely
according to the degree of surgical intervention.
In our study, arterial embolization significantly de-
creased the amount of intraoperative blood loss com-
pared with the estimated amount of bleeding.
The interval from embolization to operation was
5 days on account of the schedule of embolization
and excision in the first case, only. Metallic embolic
coils are permanent and GS particles are temporary,
with the embolic effect lasting at least 1 week with
the latter. Generally speaking, the appropriate inter-
val would be at least one day because collateral path-
ways readily develop, we believe the usefulness is
the same if risks, such as infection, pain, and fever,
are not considered.

Advantages and indications

The advantages of transcatheter arterial emboli-
zation include minimal invasion and that hemostasis
is often possible even with difficult surgical ligation.
We consider the ideal indications for arterial emboli-
zation prior to excision of musculoskeletal tumors
are: 1. When large amounts of intraoperative bleed-
ing are expected and where bleeding would be dif-
cult to stop. 2. Cases with a lower risk of serious
complications following embolization. 3. Cases with
hypervascular tumors of the trunk, pelvis and proxi-
mal limbs excluding the peripheral spinal region.

Embolization of bone tumors, especially vertebral
tumors

Gellad, et al. reported that in patients who under-
went adequate embolization, an average of 1,850
mL of estimated blood loss was reported. In those
who underwent inadequate or no embolization,
greater than 3,500 mL of estimated blood loss oc-
curred (8).

We performed embolization in 2 cases with meta-
tasis to the thoracic vertebrae. Angio-CT imaging
and xylcaine infusion testing was used before em-
bolization to identify the Adamkiewicz artery and
confirm that it was not involved with the tumor, thus
avoiding complications. We also used embolization
in the intercostal and lumbar arteries without com-
plications. Careful consideration of blood supply en-
abled us to perform embolization of vertebral tumors
safely and we feel this intervention should be con-
sidered in the treatment of primary or secondary
bone tumors (9).

Embolic materials

The main purpose of embolization is to achieve
thrombus formation and occlusion by administering
embolizing materials through a selective catheter
placed in an artery or vein (10). Our interventional
radiologists determined the appropriate artery and
the release site of the metallic coils after discussion
with the orthopedic surgeons.

The advantages of using metallic coils include a
stronger embolus effect than with the single use of
GS particles. Also, the position of the coils can be

Figure 4 : Case 9. DSA of the right external iliac artery ; a : pre-embolization, b : postembolization. GS particles and microcoils were
used. The actual amount of intraoperative bleeding was 340 mL and the average estimated amount of bleeding was 1433 mL.
easily confirmed by the surgeon using intraoperative fluoroscopy and palpation. The disadvantages include the high expense and the possibility of coil migration intraoperatively. Permanently placed coils may also cause CT and MR imaging artifacts.

In conclusion, arterial embolization prior to resection of hypervascular musculoskeletal tumors decreases the amount of bleeding during the operation and contributes to patient safety.

CONFLICT OF INTEREST

For all authors: No conflicts of interest are present.

REFERENCES