
INTRODUCTION

Inorganic phosphate (Pi) reabsorption in the kid-
ney proximal tubules is required for the survival of an
organism. Sodium (Na)-dependent Pi transporters

(NaPi) in the brush-border membrane of kidney
proximal tubular cells mediate the rate-limiting step
in the overall Pi reaborption process (1-9). The
type IIa, type IIc and type III NaPi cotransporters
(Slc34a1, SLC34A3 and SLC20A2 respectively) are
expressed in the apical membrane of the proximal
tubular cells and mediate Pi transport in kidney (1,
10, 11). Renal Pi reabsorption is regulated by dietary
Pi intake, parathyroid hormone (PTH), fibroblast
growth factor 23 (FGF23) and 1, 25-dihydroxyvita-
min D (5, 8, 9, 11-16). In rodent, Pi reabsorption is
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determined largely by the abundance of NaPi IIa
(1, 8, 17, 18). NaPi IIc is more important in weaning
animals than in adult animals, and its expression
level is extremely low in adult kidney (1, 11, 15,
19, 20).

Hereditary hypophosphatemic rickets with hyper-
calciuria (HHRH) was identified recently (21-25).
HHRH is a rare autosomal recessive inherited dis-
order that is characterized by hypophosphatemia,
short stature, rickets and/or osteomalacia and sec-
ondary absorptive hypercalciuria (21-25). These re-
ports indicated that NaPi IIc is important NaPi co-
transporter in human kidney. However, in mouse,
homozygous disrupted NaPi IIc gene causes mark-
edly different biochemical features and the bone
phenotype of HHRH (26). Thus, why mutations of
the NaPi IIc gene cause HHRH, is still unknown.
One possible explanation is that human NaPi IIc
(NPT2c) has more profound roles in renal Pi reab-
sorption and bone mineralization than mouse NaPi
IIc (Npt2c). The distribution of the NaPi IIc protein
in mouse and human is still unknown. In the present
study, we examined the distribution of Npt2c in
various tissues and found a splice valiant of mouse
Npt2c referred to here as Npt2c-v1. We have char-
acterized the function and tissue distribution of
Npt2c-v1 in mouse.

MATERIALS AND METHODS

Animals

Male C57BL/6 mice were purchased from the
Charles River Laboratories Japan (Yokohama, Ja-
pan). The mice were housed in plastic cages and
allowed free access to standard laboratory food
and tap water. Animals were maintained under
pathogen-free conditions and handled in accordance
with the Guidelines for Animal Experimentation of
Tokushima University School of Medicine, Japan.

cDNA cloning of Npt2c-v1

We obtained the cDNA clone for a mouse ex-
pressed sequence tag (EST) (GenBankTM/EBI/
DDBJ accession no. AI956218) that we found by
searching the EST data-base (dbEST) to show nu-
cleotide sequence similarity to mouse Npt2c, was
obtained from the Integrated and Molecular Analy-
sis of Genomes and their Expression (IMAGE) re-
source. This mouse clone was sequenced in both
directions using the dye terminator cycle sequencing
method (Perkin-Elmer and Applied Biosystems).

The nucleotide sequence reported in this paper
has been submitted to the GenBankTM/EMBL Data
Bank with accession number AB667978 which cor-
responding to Npt2c-v1 sequence.

Cell culture and transient transfection

Opossum kidney (OK) cells, kindly gifted by Drs.
Heini Murer and Jung Biber (University of Zurich,
Zurich, Switzerland), and MC3T3 - E1 cells and
COS-7 cells were cultured as described previously
(27). The full-length mouse Npt2c and Npt2c-v1
genes were cloned into the plasmid pcDNA3.1(+)
(Invitrogen, Carlsbad, CA). For transient transfec-
tion, cells were grown�70% confluence, and 1 μg of
cDNA were introduced with Lipofectamine accord-
ing to the manufacturer’s instructions (Invitrogen).
After transfection, OK cells and COS-7 cells were
used for immunostaining and immunoblotting re-
spectively. For immunoblotting, the preparation of
the membrane fraction was performed with Proteo
Membrane Protein Extraction Kit (Calbiochem, San
Diego, CA, USA). For immunostaining, OK cells
were plated on glass coverslips in a 35 mm dish.
After 48 h, cells were fixed with 3% paraformalde-
hyde and permeabilized with 0.1% Triton X-100/
PBS.

Isolated primary osteocytes and osteoblast from
cortical bone

Primary osteocytes, and osteoblasts were isolated
from mouse calvaria as described previously (28).
Calvaria dissected from new born C57BL/6 mice,
was dissolved in isolation buffer (25 mM HEPES,
pH 7.4, 70 mM NaCl, 10 mM NaHCO3, 60 mM sor-
bitol, 30 mM KCl, 3 mM K2HPO4, 1 mM CaCl2, 1
mg/ml BSA, 5 mg/ml glucose, 5 mM EDTA) (28).

RNA extraction and RT-PCR

Total RNA were extracted from several mouse
tissues using ISOGEN (Nippon gene, Tokyo, Ja-
pan), and cDNA was synthesized using the Moloney
murine leukemia virus (M-MLV), Reverse transcrip-
tase (Superscript, Invitrogen, Carlsbad, CA), and
oligo(dT)12-18 primer. The PCR reactions were in-
itiated with denaturation at 95��for 10 min, followed
by amplification with 40 cycles at 95��for 30 s, an-
nealing at 58��for 30 s, and 72��for 30 s.

PCR primer sequences were as follows : type
IIc NaPi transporter (5’ -CTCACCATACATGCA-
G-3’ and 5’ -TGCCTAGTAGCTGGAAAGCA-3’) ;
GAPDH (5’ - CTGCACCACCAACTGCTTAGC - 3’
and 5’ -CATCCACAGTCTTCTGGGTG-3’).
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Xenopus oocyte expression and Pi transport analyses

cRNA obtained by in vitro transcription using T7
RNA polymerase for mouse Npt2c in plasmid vec-
tor pT7T3 were linearized with NotI (29). Npt2c-
v1 was cloned into the plasmid vector pcDNA 3.1
(Invitrogen) and were linearized with XbaI and
transcribed to cRNA with T7 polymerase. Xenopus
oocyte expression studies and uptake measure-
ments were performed as described previously (20).
Briefly, Xenopus oocytes were surgically removed
under sterile conditions from frogs anesthetized with
0.1% of 3-aminobenzoic acid ethyl ester (Sigma, St.
Louis, MO). For expression studies, 25 ng cRNA
coding for either mouse Npt2c or mouse Npt2c-v1
was injected into the oocytes. Four days after in-
jection, measurements were carried out.

Pi transport analyses were examined as described
previously (20). Group of six to eight oocytes were
incubated in 500 μl of standard uptake solution
ND100 (100 mM NaCl, 2 mM KCl, 1 mM CaCl2, 1
mM MgCl2, 10 mM HEPES/Tris, pH 7.5) contain-
ing 0.1 μCi. Sodium dependency of Pi (100 μM)
transport was analyzed in ND100, Choline100 (100
mM Choline chloride, 2 mM KCl, 1 mM CaCl2, 1
mM MgCl2, 10 mM HEPES/Tris, pH 7.5) or Na
gluconate100 (100 mM Na gluconate, 2 mM K glu-
conate, 1 mM Ca gluconate, 1 mM Mg gluconate,
10 mM HEPES/Tris, pH 7.5). Pi concentration de-
pendence of Npt2c-v1 was measured at 3, 10, 30,
100, 300, and 1000 μM Pi in standard uptake solu-
tion and plotted against the Pi concentration. pH de-
pendence of Npt2c-v1 mediated Pi (100 μM) uptake
was measured in the standard uptake solution at
various pH values (20).

Immunoblotting

Protein samples were heated at 95��for 5 min in
sample buffer in the presence of 2-mercaptoethanol
and were subjected to SDS-polyacrylamide gel elec-
trophoresis. The separated proteins were transferred
by electrophoresis to Immobilon-P polyvinylidene
difluoride membranes (Millipore, Billerica, MA)
and then treated with diluted antibodies as follows :
affinity purified anti Npt2c N-terminal (1 : 2500)
or Npt2c C-terminal (1 : 1500) NaPi transporter
antibodies. Mouse anti-actin monoclonal antibody
(Chemicon, Temecula, CA) was used for internal
control (16). Horseradish peroxidase-conjugated
anti-rabbit or anti-mouse IgG was used as the sec-
ondary antibody (Jackson Immuno Research Labo-
ratories, Inc, West Grove, PA), and signals were

detected using the ImmobilonTM Western Chemi-
luminescent HRP Substrate (Millipore).

Sperm collection

To collect epididymal sperm, epididymides were
dissected from mice and immediately placed into
cold PBS (140 mM NaCl, 10 mM phosphate buffer,
pH 7.4) with protease inhibitor (PI) (Complete
protease inhibitor cocktail, Roche Diagnostics,
Mannheim, Germany). Epididymides were frag-
mented, and shake cultured at 37��for 15 min. The
suspension was centrifuged at 1200�g for 5 min
at 4��, and the pellet was suspended in PBS+PI.
The pellet was centrifuged again and resuspended
with PBS+PI (30).

Immunofluorescence analysis

Immunofluorescence analysis of mouse tissue sec-
tions was performed as described previously (16).
Testis and epididymis were collected from mice, and
soaked in 4% paraformaldehyde. Mice sperm were
dried naturally on glass, and fixed with 4% parafor-
maldehyde, 0.25% glutaraldehyde in 0.1 M sodium
phosphate buffer at pH 7.4 and acetone. For im-
munostaining, serial sections of mice tissue (5 μm),
mice sperm or OK cells that were placed on the
glass coverslips were incubated with affinity purified
Npt2c N-terminal (1 : 100-1000) or C-terminal anti-
body (1 : 100-1000) over night at 4��. Thereafter,
sections were treated with Alexa Fluor 488 anti-
rabbit IgG (Molecular Probes, Eugene, OR) (1 :
200) as a secondary antibody and Alexa Fluor 568-
phalloidin (Molecular Probes) (1 : 200) to detect ac-
tin filaments for 60 min at room temperature.

Statistical Analysis

Data are expressed as means�S.E. Statistical
analysis was performed two-factor factorial ANOVA.
p�0.05 was considered to represent statistical sig-
nificance.

RESULTS

Nucleotide sequence and predicted amino acid se-
quence of mouse Npt2c-v1

The Npt2c-v1 cDNA clone was 2,140 bp long with
an open reading frame of 1,623 bp encoding 541
amino acid residues ; Npt2c has 601 amino acid resi-
dues. A comparison of the exon 3 nucleotide se-
quences of Npt2c and Npt2c-v1 is shown in Figure
1a. The Npt2c-v1 has 64 bp nucleotides that are
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Figure 1. Gene structure, nucleotides sequences and predicted amino acid sequences of mouse Npt2c and its splice valiant, Npt2c-v1
(a) Nucleotide sequences of exon3 of the genes. (b) Gene structure. *indicates the ablated region in exon 3 of the Npt2c-v1 mRNA.
(c) Predicted amino acid sequences of Npt2c and Npt2c-v1. (d) Predicted membrane topology of the Npt2c and Npt2c-v1 showing
the truncated region at the N-terminal of Npt2c-v1.
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missing in exon 3 resulting in the deletion of the
Npt2c translation start site. The predicted transla-
tion start site of Npt2c-v1 was located in exon 5
(Figure 1b) and the amino acid sequence translated
from that site was completely consistent with the
Npt2c amino acid sequence (Figure 1c). Hydropa-
thy analysis of the presumed amino acid sequences
of Npt2c and Npt2c-v1 revealed the presence of 12
putative transmembrane domains. In the topology
model, the N-terminal intracellular loop of Npt2c is
truncated by 50 amino acids in Npt2c-v1 (Figure
1d).

Western blotting and immunofluorescence analysis
of Npt2c-v1

To assess the molecular weight of the Npt2c-v1
protein, western blotting analysis was performed
(Figure 2). Npt2c and Npt2c-v1 were transfected
into COS-7 cells. When the Npt2c N-terminal anti-
body was used to detect the presence of the proteins
in the COS-7 membrane fraction, the Npt2c pro-
tein was seen at 63.9 kDa but the Npt2c-v1 protein
was not detected (Figure 2-upper panel). In COS-7
cells membrane fraction, Npt2c was observed at
63.9 kDa and Npt2c-v1 was detected between 50
and 37 kDa using the Npt2c C-terminal antibody
(Figure 2-lower panel). In the OK cells, similar ob-
servations were detected (data not shown).

We also examined the localization of Npt2c and
Npt2c-v1 in OK cells and Xenopus oocytes (Figure
3). In OK cells, Npt2c was observed in the apical
membrane using both the Npt2c C-terminal and
N - terminal antibodies (Figure 3a, b). Npt2c - v1
immunoreactive signals were detected in the apical
membrane only with the Npt2c C-terminal anti-
body (Figure 3c) ; Npt2c-v1 was not observed when
Npt2c N - terminal antibody was used (data not
shown). Similarly, in Xenopus oocytes, the Npt2c
and Npt2c-v1 proteins were localized in the plasma
membrane (Figure 3d, e).

The functional characteristics of Npt2c -v1 in
Xenopus oocyte

Next, we analyzed the functional characteristics
of Npt2c-v1 in Xenopus oocytes. As shown in Figure
4a, microinjection of Npt2c-v1 resulted in a marked
increase in Pi transport activity, as well as in Npt2c
activity. Npt2c-v1 mediated Pi transport activity was
significantly higher than those of Npt2c (Figure 4a).
Both Npt2c and Npt2c-v1 exhibited Pi transport
activity that was dependent on Na+ but not on Cl-

(Figure 4b). These results suggested that Npt2c-
v1 is a NaPi transporter as well as Npt2c. The

Figure 2. Expression analysis of Npt2c and Npt2c-v1 by mo-
lecular weight
Npt2c and Npt2c-v1 clones were transfected into COS-7 cells.
Western blotting was performed in the plasma membrane in the
presence of 2-mercaptoethanol. Only the Npt2c protein was de-
tected by Npt2c N-terminal specific antibodies (upper panel).
Both Npt2c and Npt2c-v1 proteins were detected by Npt2c C-
terminal specific antibodies (lower panel). Lane 1, 2 ; Mock vector
(pcDNA3.1). Lane 3, 4 ; Npt2c (pcDNA3.1). Lane 5, 6 ; Npt2c-v1
(pcDNA3.1).

Figure 3. Immunocytochemical analyses
Mouse Npt2c and Npt2c-v1 clones were transfected into OK cells
(a-c), and cRNA were microinjected into Xenopus oocytes (d,e).
(a, b) Npt2c. (c) Npt2c-v1. Expression of Npt2c (green) was de-
tected using the Npt2c C-terminal antibody (a, c) and the Npt2c
N-terminal antibody (b).
The expression of actin (red) was detected using phalloidin an-
tibody (a-c).
The expression of Npt2c (d) and Npt2c-v1 (e) were detected us-
ing the Ntp2c C-terminal antibody.
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Michaelis-Menten constant (Km) for Pi was 76.12�
8.0 μM for Npt2c - v1 (Figure 4c). As shown in
Figure 4d, Pi uptake mediated by Npt2c-v1 was en-
hanced at alkaline pH. We made two N-terminal
truncated mutant clones del N24, and del N50. Us-
ing these clones, we characterized the functional
properties of the N-terminal truncation mutants.
The del N50 mutant clone also showed higher ac-
tivity of Pi transport than Npt2c (data not shown).

Expression of Npt2c and Npt2c-v1 mRNA in vari-
ous tissues

As described previously, Npt2c expression is
highest in the kidney (29), and Npt2c mRNA is
slightly expressed in several tissues (29). To de-
termine whether Npt2c-v1 mRNA is expressed in
those tissues of mouse, a set of PCR primers were
designed to specifically synthesize the amplification
of the Npt2c cDNAs and Npt2c-v1 cDNAs. Summa-
rized in Table 1, Npt2c mRNA was detected in the
kidney, spleen, testis, uterus, placenta, brain tissues
and bone. Npt2c-v1 mRNA was observed in kidney,
heart, testis, uterus, placenta, brain tissues and bone.

Thus, both Npt2c and Npt2c-v1 mRNA were iden-
tified in the kidney, testis, uterus placenta, brain tis-
sues and bone, Npt2c mRNA was observed only in
the spleen and Npt2c-v1 mRNA was observed only
in the heart (Table 1). We also detected Npt2c and
Npt2c-v1 mRNA expression in isolated osteoblasts
and/or osteocytes from calvaria of newborn mice
and in MC3T3-E1 cells (Figure 5).

Figure 4. Functional characterization of Npt2c-v1 in Xenopus oocytes
Pi transport activity in Xenopus oocytes was estimated using 32P. (a) Pi transport was measured in ND100 at pH 7.5. * indicates p�
0.05. (b) Sodium dependency of Pi transport was analyzed in ND100, Choline100, or Na gluconate buffer. a : p�0.05 for water in-
jected control in ND100, b : p�0.05 for water injected control in Na gluconate, c : p�0.05 for mNpt2c in Choline100, d : p�0.05 for
mNpt2c-v1 in Choline100. (c) Pi concentration dependence of Npt2c-v1 mediated Pi uptake. Pi uptake was measured at 3, 10, 30, 100,
300, and 1000 μM Pi in standard uptake solution (ND100 at pH 7.5) and plotted against the Pi concentration.
(d) pH-dependent phosphate transport assayed at pHs from 5.5 to 9.5. * indicates p�0.05 at pH 5.5, ** indicates p�0.05 at pH 8.5.
Values are means�SE ; n=6-10.

Table 1 Tissue distribution of Npt2c mRNA

Npt2c Npt2c-v1

kidney +++ +

heart +

spleen +

testis + +

uterus + +

placenta + +

brain tissues + +

calvaria + +

femur + +

Each tissues were obtained from wild type mice (n=3-6).
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Localization of Npt2c protein in testis, epididymis
and spermatozoa

Using Npt2c specific antibodies, we examined the
localization of Npt2c and Npt2c-v1 in bone tissue
and in the primary cultured cells. In this study, our
assay failed to detect positive signals in the bone
tissue or in primary osteoblasts (data not shown).

When sections of mouse testis, epididymis and
spermatozoa, were immunostained using Npt2c C-
terminal antibody, we detected the staining of the
Npt2c protein in spermatid and testicular sperma-
tozoa (Figure 6). However the Npt2c protein was
not detected in Sertoli cells, or in primary and secon-
dary spermatocytes (Figure 6a-c). Thus, we focused
our investigation on the localization of Npt2c-v1

Figure 5. Expression of Npt2c and Npt2c-v1 mRNA in bone cells
Primary cultured bone cells and MC3T3-E1 cells. RT-PCR was used to detect the Npt2c and Npt2c-v1. Both cells were examined at
least twice (n=6).

Figure 6. Localization of Npt2c in mouse testis and epididymis by immunofluorescence staining
(a, b and c) Mouse testis, (d, e and f) epididymis and (g, h and i) spermatozoa from wild type mouse (n=3-6). Immunofluorescence
staining of Npt2c was performed in paraffin-embedded of testis : (a, d) Npt2c (green) : (b, e) Actin (red) : (c, f) Marge. Magnifica-
tion was x 1000. Npt2c was detected in mice spermatozoa using Npt2c C-terminal antibodies : (g) Npt2c (green), (h) Actin (red) ; and
(i) Marge. Spermatozoa were collected from wild type mice (n=3-6).
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in epididymis. The Npt2c-v1 protein was observed
in the spermatozoa but not in the duct of the epidi-
dymis (Figure 6d-f). In the mouse spermatozoa,
Npt2c-v1 was localized in the head of the sperma-
tozoa, not in the flagellum region (Figure 6g-i).

DISCUSSION

In the present study, we identified and character-
ized a splice variant of Npt2c referred to as Npt2c-
v1. Npt2c-v1 lacked the portion of the N-terminal
region of the nucleotide sequence of exon 3 that in-
cluded the putative translation start site of Npt2c.
The predicted shortened amino acid sequence of
Npt2c-v1 was assumed to be translated from the
next in-frame start codon. If this is the correct
start codon, then Npt2c-v1 encodes a protein of 541
amino acid residues that lacks 60 of the amino acid
at the N-terminal end of Npt2c. Npt2c-v1 displayed
most of the characteristics of Npt2c. Npt2c-v1 was
localized in the plasma membrane and was shown
to function as a sodium-dependent phosphate trans-
porter with high affinity for Pi. The transport activ-
ity of Npt2c-v1 was dependent on the extracellular
pH similar to Npt2c.

In this study, sodium-dependent Pi co-transport
activity in Npt2c-v1 is higher than that of WT, sug-
gesting that the N-terminal region may be involved
in the NaPi cotransport activity. The current topo-
logical model of NaPi II family has been developed
mainly using cysteine scanning and in vitro tran-
scription/translation on NaPi IIa. The model com-
prises 12 transmembrane-spanning domains, intra-
cellular located NH2 and COOH terminal, and two
N-glycosylation sites located in a large extracellu-
lar loop (31). An important structural feature of the
NaPi II primary sequence is the two “repeat” re-
gions in the NH2- and COOH-terminal halves of the
protein. These repeats are preserved in all NaPi
IIa/b/c transporters as well as in homologs from
V. cholerae and C. elegans (32), which strongly sug-
gests that this conserved motif plays an essential
functional role. Recent voltage clamp fluorometry
(VCF) data also support the notion that the two
halves of the NaPi IIb protein move in a comple-
mentary manner during the transport cycle (33).
Although the role of N-terminal of NaPi IIc on Na+-
dependent Pi cotransport is not clear, VCF studies
of Npt2c-v1 and WT may offer a view of molecular
rearrangements that occur at specific sites during
substrate interaction and translocation.

Mutations in the NPT2c/SLC34A3 gene cause
HHRH (1, 21-24, 34) ; however, it is not clear why
these mutations result in rickets. Npt2c knockout
mice did not show rickets and/or osteomalacia-like
phenotypes (1, 19, 26, 35). There are several possi-
ble explanations for these findings. One explanation
was that the extra-renal expression of Npt2c might
have an important role for phosphate homeostasis.
In this study, we identified Npt2c-v1 expression in
extra-renal tissues and characterized its function.
Npt2c and Npt2c-v1 mRNAs were detected both in
the primary osteocytes and osteoblasts from mouse
cortical bone. Although the Npt2c and Npt2c-v1
mRNAs were detected in these primary cultured
cells, we failed to detect expression of the Npt2c and
Npt2c-v1 proteins. Indeed, Npt2c KO mice did not
show any bone abnormality. More detailed studies
are necessary to clarify the localization of Npt2c
and its splice valiant in bone. Although we have
not identified a human NPT2c-v1, several candidate
of splice variants in rat and human NaPi IIc tran-
scripts have detected (data not shown). Further
studies are needed to clarify the roles of the human
NPT2c splice variants.

In this study, we showed that the Npt2c-v1 trans-
porter is expressed in sperm head. Spermatozoa,
produced in the testis from spermatogonium and
termed testicular spermatozoa, do not have fertili-
zation ability (36-39). Motility and fertility are ac-
quired during transit through the epididymis, and
the maintenance of its circumstances is important
for sperm maturation (36-39). Mammalian sperm
has a head that contains the nucleus and acrosome,
a midpiece with the mitochondria and the flagel-
lum as the end piece (40). The importance of the
flagellum in sperm motility is well known, and is
regulated by the intracellular calcium concentration
as a second messenger (40-44). The Pi transporters
are thought to be localized in the plasma membrane
(42, 45). How Pi concentration might affect sper-
matozoa motility and/or fertility is unknown. One
possibility is that Pi is used as a constituent of phos-
phorylated molecules ; another is that as a Ca2+ in-
flux regulatory factor, and Zarca et al. (42) have re-
ported that extracellular Pi can influence Ca2+ trans-
port. Furthermore, Xu et al. (46) have shown that
the NaPi IIb has a potential role in male fertility.
They reported that Pi concentration in epididymis
luminal fluid might influence sperm fertility. It have
been suggested that the over expression of NaPi IIb
results in low Pi concentration in cauda luminal fluid
leading to inadequate maturation of spermatozoa
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(46). These results strongly imply that Pi is crucial
for maturation of spermatozoa and fertility.

Upon ejaculation spermatozoa are exposed to
higher extracellular pH making them motile for
the first time (47-50). During subsequent transit
through the female reproduction tract, the intra-
cellular pH of the sperm further increases as the
result of sperm capacitation (47). If Npt2c/Npt2c-
v1 is activated at alkaline pH, this would be con-
venient for the sperm in terms of ATP production
by Pi influx. Based on these results, we suggest that
Npt2c/Npt2c-v1 is a candidate of NaPi transporter
in sperm.

Finally, in the present study, we identified a splice
valiant of Npt2c and studied its functional char-
acterization. Npt2c-v1 was identified as a sodium-
dependent phosphate transporter. The presence of
Npt2c and/or Npt2c - v1 was detected in several
mouse tissues, including bone and sperm head. Fur-
ther studies are needed to clarify the role of Npt2c-
v1 in extra-renal tissues.
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