
INTRODUCTION

Ameloblasts differentiate sequentially from the
presecretory stage to the secretory and maturation
stages to produce enamel (1). During these devel-
opmental stages, ameloblasts exhibit dramatic mor-
phological changes, which are closely associated
with their functions (1). In the case of rodents, the
incisors grow continuously throughout their life.
Ameloblasts covering the labial surface of the inci-
sors migrate from the apical bud toward the inci-
sal end and undergo morphological and functional
differentiation simultaneously. Thereby, all stages

of ameloblast differentiation are conveniently visible
in the longitudinal sections at a glance (1).

The maturation stage of ameloblast differentia-
tion is subdivided into six substages, namely post-
secretory transition (rapidly decreasing ameloblast
height), maturation proper (starting enamel matu-
ration and development of the papillary layer), pig-
mentation (appearance of the pigment in the cyto-
plasm), pigment release (gradual disappearance of
the pigment), postpigmentation (complete disap-
pearance of the pigment), and reduced (marked
reduction in the height and formation of a cuboi-
dal shape) stages (1, 2). During these stages,
ameloblasts metabolize the pigment, reduce their
height gradually, and turn the color of the enamel
surface to yellowish brown via unknown mecha-
nisms (2-4). The ameloblast pigment is considered
to be iron-containing ferritin which is transferred
to lysosomes for degradation (1, 2, 5). Furthermore,
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iron is metabolically processed in the ameloblasts
and deposited on the enamel surface as a yellowish-
brown layer (3, 4, 6).

Specificity protein (Sp) 6 belongs to the SP/KLF
transcription factor family (7), and it plays impor-
tant roles in tooth development and organogenesis
of the limb buds, hair follicles, and lungs (8-10).
Sp6 -deficient mice show supernumerary teeth,
enamel agenesis, defects in cusp and root formation,
and abnormal dentin structure (9, 10). However,
the molecular basis for the role of SP6 is not well
understood. In this study, we generated Sp6 trans-
genic (Tg) rats to investigate the roles of SP6 in
tooth development. We found that incisor amelo-
genesis was perturbed in Tg rats, especially with
regard to morphological differentiation and iron me-
tabolism at late maturation stages, indicating that
the stringent spacio-temporal control of Sp6 gene
expression is crucial for morphological differentia-
tion and iron metabolism during amelogenesis.

MATERIALS AND METHODS

Sp6 Tg rats

Rat Sp6 cDNA containing the coding region (1.1
kb) was cloned into the NotI sites in the multi-
cloning sites of pCI-neo expression plasmid contain-
ing the human CMV immediate-early enhancer/
promoter region (Promega, Madison, WI, USA) us-
ing the reverse transcription polymerase chain re-
action (RT-PCR) as shown previously (11). A 2583-
bp fragment containing the Sp6 transgene compo-
nents was prepared with Bgl II and ClaI digestion,
and microinjected into fertilized eggs of Sprague-
Dawley rats to obtain Tg rat founder lines (YS
Institute, Tochigi, Japan). The Tg lines examined
were maintained as hemizygotes by crossing them
with WT SD rats for at least five generations. Proge-
nies from the cross of male Tg and female WT rats
were used for further analyses. Animal experiment
was approved by the Ethics Committee for Animal
Experiments of the University of Tokushima (No.
06105).

RT-PCR

Soft tissues and mandibular molars were obtained
from 5-week-old rats and postnatal day 6 rats, re-
spectively. Total RNA was isolated using the TRI
reagent (MRC, Cincinnati, OH, USA) according to
the manufacturer’s instructions, and reverse tran-
scribed with random 9-mers using the RNA PCR

kit (AMV) version 3.0 (Takara Bio, Ohtsu, Japan).
RT-PCR was performed using cDNA samples from
Tg rats and their non-Tg littermates (WT) with
GoTaq polymerase (Promega) and the following
primers : pCI-neo.F (5’ -GGC TAG AGT ACT TAA
TAC GAC TCA C-3’) and rSp6.R3 (5’ -TCA TAG
CCC TGT GAG AAG TC-3’) for Tg Sp6 amplifica-
tion and GAPDH-S (5’ -CAT TGA CCT CAA CTA
CAT GG-3’) and GAPDH-AS (5’ -CTC AGT GTA
GCC CAG GAT GC-3’) for Gapdh as an internal
control. Amplification cycles consisted of 94��for
4 min, 33 cycles at 94��for 30 s, at 57��for 20 s, at
72��for 30 s, and at 72��for 7 min for Tg Sp6 and
94��for 4 min, 22 cycles at 94��for 30 s, at 57��
for 30 s, at 72��for 1 min, and at 72��for 7 min for
Gapdh .

Immunohistochemistry

Cranio-facial tissues were isolated and fixed, fol-
lowed by decalcification as described previously
(12). Each incisor segment was embedded in par-
affin and a series of longitudinal sections (12-μm
thick) were prepared. Samples were immunostained
with rabbit anti-rat SP6 antiserum (11) or normal
rabbit serum as the primary antibody (1 : 400) using
Histofine Simple Stain Rat MAX-PO (R) (Nichirei,
Tokyo, Japan). DAB-buffer tablets (Merck, Darm-
stadt, Germany) were used to visualize the signals.
For immunofluorescence, anti-SP6 (11) and goat
anti-ferritin light chain (D-18 ; 4 mg/ml ; Santa Cruz
Biotechnology, Santa Cruz, CA, USA) were the pri-
mary antibodies and Alexa Fluor 594-conjugated
chicken anti-rabbit IgG (H+L) and Alexa Fluor 488-
conjugated chicken anti-goat IgG (H+L ; 10 mg/ml
each ; Molecular Probes, Eugene, OR, USA) were
the secondary antibodies.

Histological analysis

The color of incisors from rats was recorded using
a digital camera or with an MZ16 stereoscopic mi-
croscope (Leica Microsystems, Wetzlar, Germany).
At least nine (6 weeks) and four (10 weeks) rats of
WT and Tg were examined, respectively. Deparaf-
finized longitudinal sections of the maxillary inci-
sors were stained with hematoxylin. Ameloblast dif-
ferentiation was determined using Warshawsky and
Smith’s classification (1). Images of the longitudinal
sections of hematoxylin-stained incisors were cap-
tured using a light microscope connected to a CCD
camera. The length of the ameloblast layer at each
stage was measured using ImageJ software (Na-
tional Institutes of Health, Bethesda, MD, USA).
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Statistical significance was evaluated by unpaired t -
tests for an indicated data set. Prussian blue staining
was performed with 1% potassium ferrocyanide con-
taining 0.5% HCl, followed by counterstaining with
Kernechtrot stain solution (Muto Pure Chemicals,
Tokyo, Japan) before visualization.

X-ray analysis

Radiographs of Tg rat teeth were obtained using
MCT-CB100MF (Hitachi Medico, Tokyo, Japan).
The X-ray analysis system was operated at a 50-kV
accelerating voltage and a 100-μA probe current.

Measurement of serum iron concentrations

Rat sera were analyzed for non-heme iron con-
centrations and total iron-binding capacity by SRL
Inc. (Tokyo, Japan).

RESULTS

Generation of Sp6 Tg rats

Since Sp6 expressed not only in ameloblasts, but
also in hair follicles and limb buds (13), we chose
CMV promoter, which is able to function in many
cell-types, to investigate the roles of SP6 in amelo-
genesis and organogenesis. Before generating Sp6
Tg rats, we examined whether the Tg vector pro-
duced functional SP6 protein by transfecting the vec-
tor into the dental epithelial cell line G5 (14). SP6
expression was detected by western blot analysis
and its function was confirmed by down-regulation
of follistatin mRNA level by RT-PCR as shown pre-
viously (11). Then, we generated 13 independent
founder rats harboring the Tg vector and found
enamel discoloration in one line. Judging from quan-
titative PCR analysis of the line, one copy of Tg
construct was integrated into genome (data not
shown), and further analyzed this line intensively.

We first examined and observed Sp6 transgene
expression in several Tg rat tissues by transgene-
specific RT-PCR (Fig. 1A, B). Transgene was de-
tected in all screened tissue, however, only teeth
showed abnormal phenotype. Next SP6 expression
and localization was analyzed immunohistochemi-
cally using the maxillary incisors from 6-week-old
Tg rats (Fig. 1C). SP6 was strongly expressed in
the presecretory ameloblasts and contralateral odon-
toblasts as well as in early secretory ameloblasts
in WT and Tg rats. At the maturation proper stage,
strong ectopic SP6 expression was uniquely de-
tected in Tg ameloblasts.

Discoloration of incisor enamel in Sp6 Tg rats

Although Tg rats possessed the normal numbers
of teeth, the incisors from 6-week-old Tg rats were
discolored in contrast to the yellow-colored surface
of WT rat incisors (Fig. 2, left). Pigmentation in Tg
incisors increased gradually at 10-week-old, but it
was still less than that in WT incisors (Fig. 2, right).
Discoloration of the incisor enamel in rodents is
reminiscent of amelogenesis imperfecta (15, 16) and
similar to that in animals fed an iron-deficient diet
(17). To understand the reason for incisor discol-
oration in Tg rats, we examined ameloblast differ-
entiation and enamel formation (Fig. 3A, B). Histo-
logical analysis revealed that incisor ameloblasts
from WT and Tg rats secreted similar levels of
enamel matrices and formed similar Tomes’ proc-
esses (Fig. 3A) as reported previously (1). X-ray
analysis of the maxillae and mandibles from adult
rats revealed that the density of thick enamel re-
gion was higher than that of the dentin in the inci-
sors and molars from Tg rats (Fig. 3B). These re-
sults exclude any type of amelogenesis imperfecta
classified by Witkop (18).

Serum iron levels in Tg rats were comparable
with those of WT rats (Fig. 3C). Total iron-binding
capacity and transferrin saturation levels were simi-
lar in both Tg and WT rats (Fig. 3C). These results
indicated that Tg rat incisor discoloration was due
to neither amelogenesis imperfecta nor serum iron
deficiency, but rather perturbed iron transfer from
the blood vessels to the enamel surface.

Inhibition of ameloblast differentiation in Tg rats

To investigate the molecular mechanism of dis-
coloration, we examined whether iron transfer was
perturbed by ectopic Sp6 expression. Incisor sec-
tions from 6-week-old rats were stained with Prus-
sian blue (Fig. 4A). The iron signals in the incisors
of WT rats were strong in the ameloblasts at the pig-
mentation stage, however, a gradual decrease was
observed at the pigment release stage (Fig. 4A).
Furthermore, the signal was undetectable at the
postpigmentation and reduced stages. In contrast,
the signals in ameloblasts from Tg incisor were
strong at the pigmentation stage and continued to
the gingival margin (Fig. 4A). Hematoxylin-stained
section revealed that the yellow pigment remained
localized to the same region up to the gingival mar-
gin in Tg rats, indicating a delayed appearance of
the pigment releases stage (Fig. 4B). Tg rat incisor
ameloblasts at the gingival margin retained their

The Journal of Medical Investigation Vol. 59 February 2012 61



columnar shape, whereas WT rat incisor ameloblasts
exhibited reduced and contracted morphology
(Fig. 4A, B). These results indicate that both iron
uptake and storage in Tg rat incisor ameloblasts
were intact in ameloblasts, but the iron-releasing
step was significantly inhibited or delayed.

The delayed transition from the pigmentation
stage to the pigment release stage can be caused
either by (i) delayed appearance of the pigmenta-
tion stage, (ii) delayed disappearance of it, or (iii)
combination of both. To address this question, we
measured the length of the ameloblast layer at
each differentiation stage using longitudinal inci-
sor sections (Fig. 4C). Length of each layer at the

presecretory, secretory, and sum of the transition
and maturation proper stages were similar in WT
and Tg rats (Fig. 4C). However, the layer at the pig-
mentation stage was much longer in incisors from
Tg than WT rats, and was not noticeable at the later
stages in the incisors from Tg rats (Fig. 4C). Fig.
4D demonstrates the relationship between SP6 ex-
pression and ameloblast differentiation stages in WT
and Tg rats. Ectopic SP6 expression in Tg rats was
observed during the maturation proper and elon-
gated pigmentation stages.

In addition, we found that the lateral edges of the
incisors from 6-week-old Tg rats were yellowish
(Fig. 2) despite the absence of pigment release

Fig. 1 Sp6 transgene expression of Tg rat incisors.
(A) Sp6 transgene expression in various tissues was examined by RT-PCR. B, brain ; Lu, lung ; H, heart ; Li, liver ; K, kidney ; Sm,
skeletal muscle ; I, small intestine ; C, colon ; V, plasmid vector containing Tg construct (positive control). “+” and “ -” indicate with
or without reverse transcriptase, respectively. (B) Transgene and Gapdh expression was examined in molar tooth germs of WT and
Tg pups. “+” and “ -” indicate with and without reverse transcriptase, respectively. (C) Sections prepared from maxillary incisor of
WT and Tg rats (6wk) were immunostained with antiserum against rat SP6 (SP6) or normal rabbit serum (NRS). Scale bar=100 μm.
Ab, ameloblasts ; Al, apical loop ; E, enamel space ; Ob, odontoblasts ; P, pulp ; PL, papillary layer.
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(Fig. 4A-D). Examination of the pigment release at
the lateral surface of incisors using cross sections
revealed that pigment in the ameloblasts at the lat-
eral surfaces was observed in segments 1 and 2 of

the incisors from WT rats, while it began to disap-
pear in segment 3 and completely disappeared in
segment 4 in a manner similar to that at the labial
surfaces (Fig. 4E, F, H). In contrast, in incisors from

Fig. 3 Amelogenesis and serum iron
concentrations from 6-week-old Tg rats.
(A) Incisors from WT and Tg rats were
histologically examined (Hematoxylin stain-
ing). Regions containing the ameloblasts
for inner (left) or outer (right) enamel
secretion are shown. Scale bar=100 μm
(upper panels). High magnification im-
ages of Tomes’ processes are shown in
the lower panels (Scale bar=10 μm). Em,
enamel matrix ; Tp, Tomes’ processes ;
Ab, ameloblasts. (B) Maxillary (Max) or
mandibular (Man) molars and incisors
from WT and Tg rats are examined by ra-
diography. Arrows indicate radio-opaque
enamel formation. (C) Serum iron con-
centrations, total iron-binding capacity
(TIBC), and transferrin (Tf) saturation
from 6 WT and 5 Tg rats were analyzed.

Fig. 2 Discoloration of the incisors from
Tg rats.
Representative images of incisors from
6- or 10-week-old WT and Tg rats cap-
tured by a digital camera (upper panel)
or a stereomicroscope (lower panel) are
shown.
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Fig. 4 Perturbed differentiation of incisor ameloblasts from 6-week-old Tg rats.
(A) Prussian blue and (B) hematoxylin staining were performed using longitudinal sections of the maxillary incisors from WT and
Tg rats. The pigmentation (a, d), pigment release (b, e), and reduced (c, f) stages in the ameloblast layer of the incisors from WT
and Tg rats, respectively, are shown. (C) The length of the ameloblast layer at each differentiation stage in maxillary incisor longitu-
dinal sections was measured. 1, presecretory ; 2, secretory ; 3, transition and maturation proper ; 4, pigmentation ; 5, pigment release
and post pigmentation ; and 6, reduced stages. W, WT ; T, Tg. Data represented the average of three independent samples (*P=
0.0034). (D) Ameloblast differentiation stages at a particular length of the trace over the ameloblast layer from the apical end are
plotted. Three independent samples of the incisors from WT and Tg rats examined in (C) were analyzed. Red lines beside the col-
umn represent the regions in which the ameloblasts express SP6. 1-6, same as in (C). (E-H) Prussian blue staining (E), hematox-
ylin staining (F), and SP6 immunohistochemistry (G) were performed using coronal sections of maxillary incisors from WT and Tg
rats. Ameloblasts at the labial (a, c) and lateral (b, d) surfaces of the incisors are shown. Incisors were cut into segments in the di-
rection of the incisal end as shown in the scheme in (H) for the cross sections. The segment numbers (1-4) in E-G correspond to
those in H. Scale bars=100 μm.
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Tg rats, the pigment was detected at both the labial
and lateral surfaces of all four Tg rat incisor seg-
ments, although the pigment was sporadically lost
in these locations in segments 3 and 4 (Fig. 4E, F).
SP6 signal was detected in Fig. 4G similar to the
pigment distribution in the incisor ameloblasts from
Tg rats in segment 3 (Fig. 4E, F). SP6-positive cells
at both the labial and lateral surfaces decreased near
the incisal end of segment 4. Again, we observed the
concomitant correlation between SP6 expression
and high amount of ameloblast pigment, suggesting

the specific SP6 regulation of maintaining pigments
in ameloblasts.

Altered pigment release in Tg rats

We observed that the labial surfaces of the inci-
sors from 10-week-old Tg rats were weakly colored
(Fig. 2). Therefore, we examined pigment release
from incisor ameloblasts in these rats (Fig. 5). In
WT rats, here we used the littermates of Tg rats,
the pigment decreased gradually during the pig-
ment - release stage and was not observed in the

Fig. 5 Perturbed release of pigment
from the incisor ameloblasts from 10-
week-old Tg rats.
(A-G) Prussian blue staining (A, C, E),
hematoxylin staining (B, D), and SP6 im-
munohistochemistry (F) of ameloblasts
were performed using longitudinal sec-
tions of the incisor. Double-staining for
SP6 (red) and the ferritin light chain (FtL,
green) (G) was performed using sections
of maxillary incisors from WT and Tg
(Tg1, 2) rats. The pigmentation (a), pig-
ment release (b), postpigmentation (c),
and reduced (d) stages of the ameloblast
layer of incisors from WT and Tg rats
were shown. Tg1 and Tg2 were the rep-
resentative samples with low and high ac-
tivity for pigment release in the same Tg
line. PL, papillary layer ; Ab, ameloblasts ;
E, enamel space. Scale bars=100 μm (A,
B), 25 μm (C, D, E, G), and 50 μm (F).
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postpigmentation and reduced stages (Fig. 5A, B).
Interestingly, we found that there were some vari-
ations of pigment release in the same Tg line. In
some incisors from Tg rats, pigment release was in-
complete and sporadic at the pigment release stage,
and most of the ameloblasts near the incisal end
retained the pigment without ameloblast regression,
showing individual differences (Fig. 5A, B, Tg1).
In other incisors from Tg rats, pigment release was
observed partially at the pigment release stage,
and the ameloblasts regressed at the incisal end
(Fig. 5A, B, Tg2). Fine examination with higher
magnification clearly revealed that the incisor
ameloblasts from Tg rats were morphologically simi-
lar to those in the postpigmentation and reduced
stages from WT rats, but they contained the pig-
ment (Fig. 5C, D). Small pigment granules that
represent lysosomal pigment digestion (2, 5) were
observed in WT ameloblasts at the pigment release
stage. In contrast, such granules in Tg rats, were
observed not only in the pigment release stage but
also in the postpigmentation and reduced stages
(Fig. 5E). SP6 expression in the ameloblasts from
Tg rat decreased gradually from the pigmentation
to the reduced stage (Fig. 5F), which correlated

with the appearance of sporadic pigment release
(Fig. 5A, B).

To examine whether the sporadic SP6 expres-
sion in the incisor ameloblasts from Tg rats co-
localized with the scattered pigment deposition, the
sections were double-stained with antibodies against
SP6 and the ferritin light chain, which is believed
to be a component of the pigment (2, 5) (Fig. 5G).
Some ameloblasts expressed both SP6 and ferritin,
whereas others expressed either one or neither
(Fig. 5G).

DISCUSSION

Ameloblasts differentiation from the pigmentation
to later stages results in pigment loss and a gradual
regression of cellular height (1, 2). In this study,
we could dissect these concomitant events, iron me-
tabolism and morphological change during amelo-
genesis through ectopic Sp6 expression in vivo . Our
findings are summarized in Fig. 6.

In the incisors of 6-week-old Tg rats, ectopic
SP6 expression was detected predominantly in
the pigmentation-stage ameloblasts, and specific

Fig. 6 Summary of the relationship between ameloblast differentiation and SP6 expression in incisors from WT and Tg rats.
Ameloblasts at each differentiation stage are shown from the apical bud toward the incisal end. The white squares and blue circles
represent the cells and their nuclei, respectively. The black dots and circles indicate the pigment granules in the cells. The yellow
bars indicate SP6 localization. Detail explanation is described in the text.
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inhibition of pigment removal and cellular shrinkage
was observed during this stage (Fig. 4A-D). Ectopic
SP6 expression gradually ceased in the ameloblasts
near the incisal end in 10-week-old Tg rats, where
both the pigment release and the morphologic dif-
ferentiation of ameloblasts were partially restored
(Fig. 5). Concomitantly, ectopic SP6 expression dis-
appeared sporadically in ameloblasts on the lateral
surface of the incisors of 6-week-old Tg rats (Fig.
4G), and pigment release of the ameloblasts and
staining of the lateral edges of enamel were partially
observed (Fig. 2 and Fig. 4E, F). These results in-
dicate that ameloblast differentiation in Tg rats is
disturbed through Tg SP6 activity.

In 10-week-old Tg rat incisors, gradual cellular
shrinkage was observed along with sporadic SP6
expression in the late maturation-stage ameloblast
layer (Fig. 5F). It may indicate that SP6 is not di-
rectly involved in inhibiting morphologic differ-
entiation of the ameloblasts. In addition, some
ameloblasts in 10-week-old Tg incisors expressed
significant amounts of SP6 and negligible amounts
of ferritin, whereas others expressed less SP6 and
more ferritin (Fig. 5G). These findings demonstrate
that SP6 may regulate pigment retention indirectly,
because ferritin is a possible pigment constituent,
suggesting that another factor or mechanism is in-
volved in this metabolic phase.

We found an expanded ameloblast layer at the
pigmentation stage in the longitudinal sections of
the incisors from 6-week-old Tg rats (Fig. 6, the
second panel). We hypothesized two reasons for it ;
disturbed cell number or blocked cell differentiation.

The cell number of ameloblasts is regulated by
the balance between proliferation and cell death.
Introduction of the Sp6 transgene may have inhib-
ited ameloblast cell death or activated ameloblast
proliferation at the pigmentation stage. Previous
studies demonstrated that SP6 has anti-apoptotic
(9, 10) and growth-promoting activities (9, 11, 13).
Moreover, Smith and Warshawsky reported that
25% of incisor ameloblasts die during the postsecre-
tory transition stage and another 25% die during the
later maturation stages (19). However, we could
not detect cell death histologically during the later
stages in Sp6 Tg rats (data not shown). Aberrant
SP6 expression might disturb the transcriptome and
the following metabolome in ameloblasts, resulting
in the inhibition of ameloblast differentiation toward
the pigment release stage.

In general, ameloblasts in the pigment release
stage undergo pigment digestion in WT rat incisors

(Fig. 6, the top panel). Molecular mechanisms regu-
lating pigment release have not been so far estab-
lished. Two possible mechanisms for the pigment
release can be proposed. One is that an internal
signal such as cellular stress including excess iron
accumulation in the cells may trigger metabolic
pathways to exclude the iron-containing pigment.
Another is that an external signal surrounding the
narrow niche may promote pigment release by the
unknown mechanism.

Ameloblasts in the pigment release stage contain
small pigment dots through lysosomal pigment di-
gestion (2). Unexpectedly, we observed the pigment
digestion in the incisors from 10-week-old Tg rats
in the pigment release, postpigmentation, and re-
duced stages (Fig. 6, the third and fourth panels),
although no observation of those stages in 6-weel-
old Tg rats. This finding indicated that pigment re-
lease itself is under the separate regulation from the
presence of Sp6. In addition, some Tg ameloblasts
retained pigment until they became much shorter
at the postpigmentation and reduced stages (Fig. 6,
the fourth panels).

During shrinking of the pigment retaining cells,
some of the pigment might be exported gradually
from the cells, because the cytoplasmic space filled
with in the pigment must be reduced dramatically,
indicating that another pigment digestion mecha-
nism could function in the late postpigmentation and
reduced stages. Further investigation is necessary
to understand the regulatory mechanisms underly-
ing the pigment release and to identify the external
signals from the surrounding niche.

Iron metabolism is a critical process for living
organisms. Since abnormal accumulation of iron
in the cells leads to eventual organ failure via
iron-mediated free radical formation (20), tight con-
trol of iron metabolism is crucial for survival. Re-
cently, Matak et al. reported that Sp6 orthologs,
may be involved in the genetic response to in-
creased intestinal iron absorption (21). It is an in-
teresting issue to determine whether accumulation
and metabolism of iron-containing pigment in sev-
eral organs such as liver, heart, and pancreas is con-
trolled in the same way as pigment retention in the
ameloblasts.

In conclusion, Sp6 Tg rat provides a useful tool
to further analyze the new role of SP6 in not only
morphological regulation but also iron metabolism in
amelogenesis in vivo , and suggested temporospatial
regulation of SP6 expression is a critical issue to
understand amelogenesis.
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