
INTRODUCTION

Effective disinfection procedures are central to the
safety of public water systems, not only for drinking
and sanitation, but also industrially, as biofouling is
a commonplace and serious problem. Some bacteria
(e.g. , Bacillus and Clostridium species) have vege-
tative and spore forms in the life cycle (1, 2). Thus,

killing both the vegetative cells and spores is impor-
tant for disinfection. When the environment be-
comes more favorable, spores can reactivate to form
vegetative cells (3). Spores are dormant, tough, and
temporarily non-reproductive structures that can
survive without nutrients. They are commonly found
in soil and water, where they may survive for long
periods of time, and are resistant to ultraviolet ra-
diation, desiccation, high temperature, extreme
freezing, and chemical disinfectants (4-6).

Bacillus species are gram positive, aerobic, and
spore forming bacteria (7). Bacillus spores are 5 to
50 times more resistant to UV radiation than the cor-
responding vegetative cells, and the mechanisms for

ORIGINAL

Sterilization effect of UV light on Bacillus spores using
TiO2 films depends on wavelength

Le Thi Tuyet Nhunga, Hirofumi Nagatab, Akira Takahashia,*, Mutsumi Aiharaa,

Toshihiro Okamotob, Takaaki Shimohataa, Kazuaki Mawataria, Masatake Akutagawac,

Yhosuke Kinouchic, and Masanobu Haraguchib

aDepartment of Preventive Environment and Nutrition, Institute of Health Biosciences, bDepart-

ment of Optical Science and Technology, and cDepartment of Electrical and Electronic Engineer-

ing, Institute of Socio Techno Sciences, the University of Tokushima Graduate School, Tokushima,

Japan

Abstract : UV light and photocatalysts such as titanium dioxide (TiO2) and silver (Ag) are
useful for disinfection of water and surfaces. However, the effect of UV wavelength on
photocatalytic disinfection of spores is not well understood. Inactivation of Bacillus spores
has been examined using different UV wavelengths and TiO2 or TiO2/Ag composite mate-
rials. The level of UVA disinfection of Bacillus anthracis and Bacillus brevis vegetative
cells increased with the presence of the TiO2 and Ag photocatalysts, but had little effect
on their spores. B. brevis spores were slightly more sensitive to UVB and UVC than the
spores of B. atrophaeus. Photocatalytic sterilization against spores was strongest in UVC
and UVB and weakest in UVA. The rate of inactivation of Bacillus spores was significantly
increased by the presence of TiO2, but was not markedly different from that induced by
the presence of Ag. Therefore, TiO2/Ag plus UVA can be used for the sterilization of vege-
tative cells, while TiO2 and UVC are effective against spores. J. Med. Invest. 59 : 53-58,
February, 2012

Keywords : disinfection, Bacillus spore, UV light, photocatalytic.

Received for publication August 31, 2011 ; accepted September
15, 2011.

Address correspondence and reprint requests to Akira Takahashi,
M.D., Ph.D. Department of Preventive Environment and Nutri-
tion, Institute of Health Biosciences, University of Tokushima
Graduate School Kuromoto - cho 3 - 18 - 15 Tokushima 770-8503,
Japan and Fax : +81-88-633-7113.

The Journal of Medical Investigation Vol. 59 2012

53



handling UV damage are different between the two
life forms (8). Bacillus anthracis has nearly world-
wide distribution, existing in the soil in the form of
extremely stable spores and causing infection in
farm and wild animals that have grazed on contami-
nated land or ingested contaminated feed (9).
Bacillus atrophaeus is used as a biological indicator
to monitor sterilization processes and as a surrogate
in the development of biosafety methods (9-11).

Advanced oxidation processes using photocata-
lysts are potential alternatives to traditional methods
of disinfection (12). TiO2 or TiO2 plus Ag are widely
used as a photocatalyst because it is highly efficient,
nontoxic, chemically and biologically inert and pho-
tostable, inexpensive and has good mechanical hard-
ness (12, 13). However, the effect of TiO2 and TiO2

with Ag photocatalysts on bacterial spores is not
well understood.

Many studies have shown that activation of TiO2

and TiO2 with Ag photocatalysts with ultraviolet A
(UVA) light is a highly effective process for com-
plete inactivation of bacterial vegetative cells of
Gram-negative (Escherichia coli) and Gram-positive
(Staphylococcus aureus, Bacillus atrophaeus) bacteria
(14-17). The photocatalytic effect is reportedly de-
pendent on the wavelength of light (18). UV is sepa-
rated into UVA, UVB, and UVC based on wave-
length. A high dose of UVA, which is used in the
UVA-LED disinfection system, can kill vegetative
cells directly (19). However, it is not clear that pho-
tocatalysts plus UVB or UVC exposure affect the
disinfection of spores.

In this study, vegetable cells and spores of B.
atrophaeus and B. brevis were used as models to in-
vestigate the sterilization capacities of TiO2 and Ag
with different UV wavelengths.

MATERIALS AND METHODS

Preparation of catalysts

The preparation of TiO2 and TiO2/Ag films has
been described elsewhere (11). Briefly, TiO2 and
TiO2/Ag films were prepared using the following
chemicals : tetra-isopropoxytitanium Ti(i-OC3H7)4

(Kantokagaku, Tokyo, Japan), silver paste (Ag)
(Nippon Paint Corp., Osaka, Japan), ethanol
(C2H5OH), hydrochloric acid (HCl), and H2O. The
TiO2 sol was composed of 28.4g Ti(i-OC3H7)4, 0.1 L
C2H5OH, 2.32 g H2O, and 0.514 g HCl. The solution
was mixed for 5 min after the addition of 100 g Ag
nanoparticle paste (Ag nanoparticle paste included

9 wt% protective colloid, 74 wt% C2H5OH, 17 wt%
(0.1564 g) Ag nanoparticle) at room temperature
(for TiO2/Ag film). The diameter of nanoparticles in
the paste was 20 nm. The glass substrates (76�26
mm, 1.2�1.5 mm thick) were immersed in sol so-
lution at the rate of 2.25 mm/s and dried at room
temperature for 10 min. The sol films were calcined
at 250��for 60 min in air to achieve cohesion and
adhesion of the film to the substrate.

Preparation of spores and vegetative cells

Bacillus atrophaeus strain ATCC9372 and Bacillus
brevis strain IFO3331 were used as model microor-
ganisms for the disinfection experiments. The bac-
teria were cultured in Luria-Bertani (LB) broth (1%
tryptone, 0.5% yeast extract, 1% NaCl) at 37��with
rotary shaking for 18 hr. The 2 ml overnight cul-
ture was centrifuged at 12,000 rpm for 3 min. The
supernatant was discarded and the bacterial pellet
was washed three times with sterilized phosphate-
buffered saline (PBS) and suspended in PBS at an
initial concentration of 108 CFU/ml.

Spores were prepared by growing B. atrophaeus
and B. brevis on Luria-Bertani (LB) agar (1% tryp-
tone, 0.5% yeast extract, 1% NaCl) plates at 37��
for at least 7 days (B. atrophaeus) and 15 days (B.
brevis). Once spores had been collected by scraping
the surface of the agar, they were washed three
times with sterilized phosphate-buffered saline
(PBS), suspended in PBS at an initial concentration
of 108 CFU/ml. The spores were heat treated (80��,
20 min) and stored in a refrigerator (4��).

An aliquot (50 μl) of the bacterial spore or vege-
tative cell suspension was added drop-wise onto
the surface of each film and exposed to UV light.
The bacterial spore solution was not stirred during
exposure time, which was performed in a dark room
at 25��for various time periods. After irradiation,
the sample was placed in a petri dish with 5 ml of
PBS and shaken for 10 min. Dilutions were placed
on LB agar plates and incubated at 37��for 24 hr
before bacterial colonies were counted. Survival of
the bacterial population was calculated using the
equation :
Log survival ratio=Log (Nt/N0)
Where N0 represented the initial population and Nt

represented the population after irradiation time (T).
All results were calculated with data from three in-
dependent experiments.

UVA irradiation

Ultraviolet A-light emitting diodes (UVA-LED)
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with peak irradiance at 365 nm (Model NCSU033B,
Nichia Corp., Tokushima, Japan) were used to cre-
ate the sterilization device. With one connection to
the power source, the device ran on 20.00 V with a
maximum current of 0.5 A and UVA intensity of 9
mW/cm2, which was measured by the UIT-250 UV
meter (Ushio Corp., Tokyo, Japan). In all cases, the
light was switched on 30 min before the start of the
reaction to stabilize the emission power and spec-
trum. The distance between the UVA-LED and the
surface of the bacterial solution was 1.5 cm. UVA
irradiation was performed in a dark room at 25��
for various time periods.

UVB and UVC irradiation

A low - pressure UV lamp (8 W ; 3UV Multi -
Wavelength Lamp, 3UV-38 ; UVP, Inc. Upland, CA,
USA) was used to irradiate at 302 nm (UVB) and
254 nm (UVC). Intensity was adjusted by changing
the distance between the lamp and the bacterial
spore solution. The intensity at 254 nm (distance :
46.5 cm) was 0.06 mW/cm2, which was measured
by the UIT-250 UV meter (Ushio Corp., Tokyo,
Japan). Intensity at 302 nm (distance : 36 cm) was
0.09 mW/cm2, which was measured by the MCPD-
3700 multi channel photodetector (Otsuka electron-
ics Co., Ltd, Osaka, Japan). In all cases, the light was
switched on 30 min before the start of the reaction
to stabilize the emission power and spectrum. UVB
and UVC irradiation was performed in a dark room
at 25��for various time periods.

RESULTS

The effect of the use of a photocatalyst and UVA
on the inactivation of B. atrophaeus and B. brevis is
shown in Figure 1. Inactivation was compared be-
tween the two forms of the bacteria. For vegetative
cells, photocatalytic (TiO2 or TiO2/Ag films) inacti-
vation of Bacillus were 4 to 9 fold (B. atrophaeus)
and 1.2 to 1.4 fold (B. brevis) higher than when UVA
exposure alone (normal glass) was used, which was
consistent with previous observations (14-17, 20).
In contrast, spores were resistant to UVA only ex-
posure and photocatalytic inactivation. These results
demonstrated that photocatalysis-assisted inactiva-
tion of vegetative cells is higher than inactivation of
spores in the same organism when UVA is used.
Moreover, B. brevis vegetative cells had a higher
sensitivity to UVA exposure or photocatalytic inac-
tivation than B. atrophaus in vegetative cells.

Next, we investigated the effects of UV wave-
length and irradiation time on inactivation of B.
atrophaeus and B. brevis spores (Fig. 2A, 2B). Bacte-
rial spores were exposed to UVA-LED at 365 nm, a
UVB lamp at 302 nm and UVC lamp at 254 nm. Ex-
posure of UVA alone had very little effect on spores.
But the bactericidal efficiency of UVB or UVC was
increased with irradiation time in B. atrophaeus and
B. brevis spores. With UVC exposure, disinfection
of bacillus spore was significantly increased by the
presence of TiO2. These results indicate that pho-
tocatalyst function was involved in the inactivation
spore mechanism with UVC, but neither is involved
in the effects of UVA irradiation (Fig 2B and Fig
2C). Moreover, the rate of inactivation of Bacillus
spores was significantly increased by the presence
of TiO2, but was not markedly different from the
inactivation level induced by TiO2/Ag (Fig 2C).

Fig. 1. Effect of photocatalysis on the inactivation of B.
atrophaeus (A) and B. brevis (B). Bacterial spores and vegeta-
tive cells were exposed to UVA-LED at 365 nm. The irradiation
dose was adjusted to 9 mW/cm2, with an exposure time of 10
min. All experiments were performed in the dark at 25��for the
same period of time. Data are expressed as the means�SD from
three independent experiments.
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DISCUSSION

While UVA disinfection of B. atrophaeus and B.
brevis vegetative cells was increased by the pres-
ence of TiO2 and Ag, inactivation of B. atrophaeus
and B. brevis spores with TiO2 and/or Ag was very
low (Fig. 1). These results contradict reports show-
ing an increase in the efficiency of photocatalytic in-
activation of Bacillus spores with TiO2 upon incorpo-
ration of silver with high doses of UVA 153 W/m2

(21) and differences in the preparation of photocata-
lysts (21, 22). The spores of Bacillus species are
much more resistant to UV radiation than are the
corresponding growing cells, and mechanisms that
respond to UV damage are different in the two popu-
lations (8). The UVA intensity in this study was 9
mW/cm2, which was much higher than UVB (0.09
mW/cm2) or UVC (0.06 mW/cm2) doses. The high
intensity of UVA irradiation needs higher energy
consumption than UVB irradiation or UVC irradia-
tion. Thus, we think that photocatalytic inactivation
with UVA using thin films was hard to available to
spore sterilization system. Under the conditions of
this experiment, the spores of both species were
more sensitive to UVB and UVC than UVA. UVC

enhanced the rate of inactivation by approximately
2 fold over that of UVB. Previous studies have re-
ported that UV fluency primarily affects radiation-
sensitive microorganisms via DNA damage, whereas
at higher UV fluency (various) mechanisms of pro-
tein damage are presumably responsible for inacti-
vation (23).

UVA irradiation increased levels of reactive oxy-
gen species, including superoxide anion radicals
(O2
�-), hydroxyl radicals (OH�), hydrogen peroxide

(H2O2), and singlet oxygen (1O2) (24-26). We re-
ported UVA-induced oxidative damage is a major
factor in the inactivation of bacteria, previously (19).
The primary photocatalytic action for bacterial dis-
infection is also oxidative damage (27). The mecha-
nism underlying photocatalysis, in the presence of
TiO2 and Ag, is irradiation of TiO2 with UV light to
produce electron-hole pairs. Absorption of photon
by the electron in the valence band of TiO2 pro-
motes the electron to the conduction band, creating
a negative-electron (e-) and positive-hole (h+) pair.
Formation of the electron-hole pair leads to gen-
eration of reactive hydroxyl radicals (�OH) on the
TiO2 surface (28). Hydroxyl radicals are powerful
oxidants that can damage microbial cell walls and

AA BB CC

Fig. 2. Effect of wavelength and irradiation time on inactivation of B. atrophaeus (A) and B. brevis (B) spores. Comparison of the
effect of photocatalysts (TiO2, TiO2/Ag) and a non-photocatalyst (normal glass) on the inactivation of B. atrophaeus (C(i)) and B. Brevis
(C(ii)) spores. C(i) and C(ii) were re-made from same data of A and B for clear the differences of the effect of photocatalysts. Bacte-
rial spores were exposed to UVA-LED at 365 nm, UVB lamp at 302 nm and UVC lamp at 254 nm. Doses were adjusted to 9 mW/cm2

(UVA), 0.09 mW/cm2 (UVB) and 0.06 mW/cm2 (UVC). (I) Normal glass sheet, (II) TiO2 film, (III) TiO2/Ag film. All experiments
were performed in the dark at 25��for the same period of time. Data are expressed as means�SD from three independent experi-
ments.
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membranes, DNA and RNA (27). Moreover, the
ability of TiO2 to inactivate Bacillus spores was not
markedly different in the presence of Ag. Although
Ag itself has no killing activity (15), silver doping
enhances electron-hole separation in TiO2, the vis-
ible light excitation of TiO2 and, by extension, the
photocatalytic inactivation of microorganisms (29).
It is speculated that Ag enhances the oxidative abil-
ity of TiO2 photocatalytic action (30). Thus, we hy-
pothesized that spores are more resistant to oxida-
tive stress than vegetative cells (31). Because the
oxidative resistance of spores is important in the
sterilization process, further study is necessary.

In conclusion, the presence of photocatalysts
(TiO2 and Ag) increased the photocatalytic disinfec-
tion of Bacillus vegetative cells. The disinfection of
spores depended on the wavelength of UV light.
Photocatalysis had no effect on Bacillus spores when
UVA light was used, but had a pronounced effect
under UVC. In addition, the presence of TiO2 en-
hanced the photocatalytic inactivation rate of spores.
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