
INTRODUCTION

Matrix metalloproteinases (MMPs) are an im-
portant group of zinc enzymes responsible for deg-
radation of extracellular matrix components such as
collagen and proteoglycans during normal embryo-
genesis, tissue remodeling, and in many disease

processes such as arthritis, cancer, tumor metasta-
sis, periodontitis, and osteoporosis (1). We reported
recently that Sendai virus, a member of the Para-
myxoviridae family, markedly upregulates MMP-9
and matrix degradation in rat lungs and lung L2
cells (2). The virus causes severe respiratory ill-
ness in rodents, similar to influenza virus pneumonia
in humans. MMP-9 is an important player in many
physiological processes such as development, wound
healing, angiogenesis, and inflammation. Inflamma-
tory cells, including T cells and macrophages, pro-
duce MMP-9 under pathological conditions (1, 3,
4). In addition, MMP-9 degrades type IV collagen,
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a major component of the basement membrane of
endothelial cells, and is responsible for maintaining
the integrity of the blood-brain barrier (5).

It has been reported that serum MMP-9 concen-
trations are significantly higher in patients with
influenza-associated encephalopathy and associated
with poor prognosis compared to patients with un-
complicated influenza or in healthy controls (6), al-
though MMP-9 levels in the lung and other organs
after influenza virus infection have not been stud-
ied. MMP-9 levels appear to be regulated by a num-
ber of extracellular proinflammatory cytokines, such
as tumor necrosis factor alpha (TNF-α) and inter-
leukin 1 beta (IL-1β) (7-11), and by intracellular sig-
naling factors, such as mitogen-activated protein
kinases (MAPKs), nuclear factor kappa B (NF-κB),
and activator protein 1 (AP-1) (12-15). TNF-α also
directly activates MAPK family members, such as
extracellular signal-regulated kinase (ERK, p42/p44
MAPK), c-Jun N-terminal kinase (JNK), and p38
MAPK (16, 17). Despite its characterized role in
many physiological and pathological processes,
mode of regulation of MMP-9 and the mechanisms
of regulation in the lungs and the other organs after
influenza A virus infection remain unclear. Further-
more, the pathological roles of MMP-9 in multiple
organ failure associated with severe influenza and
drugs for suppressing MMP-9 activity are also
largely unknown.

The present study first demonstrated MMP-9
upregulation and tissue destruction in various or-
gans after influenza A WSN virus infection in mice
and elucidated the intracellular signaling pathways
involved in this phenomenon. The results also dem-
onstrated that inhibitors of MAPKs and transcrip-
tion factors for MMP-9 upregulation are potential
drug targets for the treatment of influenza pneumo-
nia and associated multiple organ failure.

MATERIALS AND METHODS

Animals

Specific pathogen-free 1-week-old C57BL/6CrSlc
mice with mothers were purchased from Japan SLC.
All animals were treated in accordance with the ani-
mal care committee guidelines of the University of
Tokushima.

Materials

U0126, SB203580, and SP600125 inhibitors were
purchased from Calbiochem (San Diego, CA).

N-acetyl-L-cysteine (NAC) was purchased from
Nacalai Tesque (Kyoto, Japan), pyrrolidine dithio-
carbamate (PDTC) from Wako (Osaka, Japan), and
nordihydroguaiaretic acid (NDGA) from Sigma (St.
Louis, MO). Rabbit anti-phosphokinase, anti-p42/
p44 MAPK, anti-p38 MAPK, and anti-SAPK/JNK
antibodies were purchased from Cell Signaling
(Beverly, MA). Rabbit antibodies specific for TNF-
α, laminin, fibronectin, and collagen IV were ob-
tained from Santa Cruz Biotechnology (Santa Cruz,
CA). Monoclonal anti-TNF-α antibody was also pur-
chased from Sigma (St. Louis, MO).

Viral infection

Mice were anesthetized with ketamine before
intranasal inoculation of 100 plaque-forming units
(PFU) of chicken egg-grown IAV/A/WSN/33(H1N1)
virus in 6 μl of saline or with saline as the vehicle
control. The mice were then subjected to experi-
ments at various times after infection. At -1 h before
infection, some mice received intraperitoneal injec-
tions of anti-TNF-α monoclonal antibody (350 mg/
kg) or specific inhibitors : U0126 (0.25 mg/kg),
SB203580 (0.25 mg/kg), SP600125 (0.25 mg/kg),
NAC (10 mg/kg), PDTC (10 mg/kg), and NDGA
(2.5 mg/kg). The antibodies and inhibitors were in-
jected once daily for 3 days, and the mice were sac-
rificed at 4 days postinfection. Virus titers were de-
termined in Madin-Darby Canine Kidney (MDCK)
cells as reported previously (18).

Western blot analysis

Mice tissues were homogenized with 3 volumes
of Tris-HCl, pH 6.8, containing 2% SDS and 0.5 M
NaCl, and then centrifuged at 12,000�g for 30 min.
The protein concentrations of the extracts were
measured by BCA protein assay (Bio-Rad Labora-
tories, Hercules, CA) and equal amounts (30 μg pro-
tein) were subjected to SDS-PAGE under nonre-
ducing conditions to detect MMP-9 and under re-
ducing condition to detect the other proteins. After
transfer to Immobilon transfer membrane (Millipore,
Bedford, MA) and blocking with 5% skim milk in
0.02 M Tris-HCl, pH 7.5, containing 0.5 M NaCl
and 0.05% Tween 20, the membranes were probed
with individual antibodies overnight at 4��. After in-
cubation for 1 h with the goat anti-rabbit IgG con-
jugated with horseradish peroxidase, immunoreac-
tive bands were detected using enhanced chemilu-
minescence (Amersham Pharmacia Biotech, Pis-
cataway, NJ).
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Gelatin zymography

Tissue extracts were prepared as described above
and equal amounts (50 μg protein) were subjected
to electrophoresis on 10% gelatin zymogram gels
(Invitrogen Life Technologies, Carlsbad, CA) as re-
ported previously (19). The gels were then rena-
tured in 2.5% (w/v) Triton X-100 for 30 min at room
temperature and incubated overnight in substrate
buffer (50 mM Tris-HCl, pH 8.0, 5 mM CaCl2, and
0.02% w/v NaN3) at 37��according to the instruc-
tions provided by the manufacturer. Finally, the
gels were stained with 0.05% Coomassie Blue R-250
buffer for 15-30 min, destained with water, photo-
graphed for lysis band intensity, and dried for stor-
age.

Enzyme-linked immunosorbent assay (ELISA)

Blood samples were collected from the infected
mice and serum was separated by centrifugation at
2,000�g for 10 min at 4��. The levels of TNF-α in
the serum were measured by ELISA according to
the protocol provided by the manufacturer (BD Bi-
osciences, Franklin Lakes, NJ).

Total RNA extraction and reverse transcription
(RT)-PCR

Total RNA was isolated from mouse lungs using
an RNeasy Mini kit (Qiagen, Valencia, CA) accord-
ing to the manufacturer’s protocol, and reverse tran-
scribed using universal primers of influenza virus and
SuperScript III RT kit (Gibco BRL, Gaithersburg,
MD) for cDNA synthesis. The following primer pairs
were used to amplify influenza virus non-structure
protein 1 (NS1) gene segments, a region highly con-
served in various subtypes and genotypes of influ-
enza A virus, (sense, 5’ -CAGCACTCTCGGTCTGG-
ACAT-3’, and antisense, 5’ -TCCTTCAGAATCCGC-
TCCACTA-3’). RT-PCR was initiated at 95��for 15
min followed by 40 cycles of 15-sec denaturation at
95��, 30-sec annealing at 58��and 30-sec exten-
sion at 72��. PCR products were analyzed by aga-
rose gel electrophoresis and visualized by treatment
with ethidium bromide.

Statistical analysis

Results are presented as mean�SEM (from three
independent experiments). Differences between
groups were examined for statistical significance by
Student’s t -test. Differences were considered signifi-
cant when the P values were�0.05.

RESULTS

Influenza A WSN virus infection induces TNF-α in
various tissues and serum, while inhibitors of NF-
κB and AP-1 inhibit the induction

We have reported the kinetics of viral replica-
tion in the lungs of mice and rats after intranasal
instillation of influenza A virus with a peak on day 4
postinfection (20-22). Fig. 1A shows the time courses
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Fig. 1 Kinetics of influenza A WSN viral replication in mice,
upregulation of TNF-α in various tissues and inhibition of the
upregulation by inhibitors of NF-κB and AP-1.
(A) Detection of influenza A WSN virus NS1 gene in the lung,
heart and brain of mice during 2-6 days postinfection by RT-PCR.
Right side columns show the levels without infection. (B) TNF-
α expressions in the extracts (30 μg) of brain, lung, and heart of
mice at 4 days postinfection were analyzed by western blotting.
PDTC, NAC, and NDGA were administered at infection -1 h and
then once daily for 3 days. Representative example of three ex-
periments with similar results. (C) Serum levels of TNF-α were
measured by ELISA at 4 days postinfection. Data are mean�
SEM of three independent experiments. P�0.05 was considered
statistically significant, analyzed by using Student’s t -test.
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of viral replication in various organs monitored by
viral NS1 gene after intranasal instillation of influ-
enza A WSN virus. Levels of viral RNA in the lungs,
the site of initial virus infection, were the highest
with a peak at day 4 postinfection, and were under
detection at day 6 in all organs. Influenza virus in-
fection also induces a significant increase in levels
of proinflammatory cytokine TNF-α, which affects
host survival by initiating and/or promoting various
immunological and inflammatory responses (23-25).
TNF-α levels were analyzed by western blotting and
ELISA in the brain, lung, heart and serum of mice on
day 4 after influenza A WSN virus infection (Fig. 1B
and C). The infection markedly upregulated TNF-
α in mouse tissues, particularly in lung and heart.
TNF-α levels in the blood were also slightly but sig-
nificantly increased. Since TNF-α activity is asso-
ciated with activation of transcription factors NF-κB
and AP-1 (25), we pretreated mice 1 h before infec-
tion and then once daily after infection for 3 days
with anti-oxidative reagents, PDTC and NAC, to
suppress NF-κB (26, 27), and with NDGA to sup-
press AP-1 (28). The treated tissues showed sig-
nificantly lower expression of TNF-α in the brain,
lung, and heart at day 4 postinfection. NDGA was
particularly potent at suppressing TNF-α in all tis-
sues tested, and also tended to mildly suppress the
production of TNF-α in serum, although not signifi-
cantly.

MMP-9 upregulation by viral infection is mediated
through TNF-α, MAPK pathways, and activation of
NF-κB and AP-1

We reported previously that Sendai virus, a Para-
myxovirus , upregulates MMP-9 expression in the
lung and in lung L2 cells (2). The present study
demonstrated that influenza A WSN virus, an Or-
thomyxovirus , also upregulates MMP-9 expression
markedly in the lung and moderately in the brain
and heart at 4 days after infection (Fig. 2). To eluci-
date the relationship between the infection-induced
upregulation of TNF-α and MMP-9, and to clarify
the mechanisms involved, we administered anti-TNF-
α antibodies, anti-oxidative reagents (PDTC, NAC,
and NDGA), and inhibitors of MAPK signaling path-
ways intraperitoneally at 1 h before infection and
then once daily for 3 days. MMP-9 in the brain,
lung, and heart was analyzed by gelatin zymography
at 4 days postinfection. The upregulation of MMP-
9 in the lung and brain was almost completely sup-
pressed to preinfection basal levels by all treatments,
while the upregulated activities in the heart were

partly decreased. These results indicate that MMP-
9 upregulation by influenza A WSN virus infection
is mediated mainly through TNF-α and activation
of NF-κB and AP-1.

Phosphorylation of MAPKs by viral infection and
effects of MAPK inhibitors on MMP-9 upregulation

Human immunodeficiency type-1 virus Tat upregu-
lates MMP-9 in human astrocytes via TNF-α pro-
duction and MAPK-NF-κB-dependent mechanisms
(29). To investigate whether influenza A WSN vi-
rus modulates MMP-9 upregulation through MAPK
signaling pathways, we measured phosphorylated
levels of p38 MAPK, ERK1/2, and JNK in cyto-
plasmic extracts of lung, brain, and heart by west-
ern blotting using the appropriate phosphoryla-
tion - specific antibodies. At 4 days postinfection,
there was a marked increase in phosphorylated p38
MAPK and ERK1/2, and a slight or no increase in
JNK phosphorylation in all mouse tissues examined
(Fig. 3A).

In the next step, the effects of specific inhibi-
tors for ERK (U0126), JNK (SP600125), and p38
(SB203580) (30-32) on MMP-9 upregulation by in-
fluenza A virus infection were examined. Treatment
with U0126 and SB203580 efficiently suppressed the
upregulated activities of MMP-9 to basal levels in
all tissues at 4 days postinfection, while SP600125
had a partial effect (Fig. 3B). These results suggest
MAPK-NF-κB and/or AP-1 signaling pathways are
predominant mediators of MMP-9 upregulation by
influenza A WSN virus infection.

Fig. 2 Upregulation of MMP-9 by influenza A WSN virus infec-
tion and its inhibition by treatment with anti -TNF-α antibodies
and by inhibitors of NF-κB and AP-1.
The levels of MMP-9 expression in the brain, lung, and heart of
mice at 4 days postinfection were analyzed by gelatin zymogra-
phy. Representative example of three experiments with similar
results.

The Journal of Medical Investigation Vol. 57 February 2010 29
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Effects of inhibiting MMP-9 upregulation on lung
inflammation after viral infection

MMP-9 plays an important role in inflammation
and degradation of extracellular matrix (ECM) pro-
teins. We therefore monitored the amounts of ECM
proteins collagen IV, fibronectin, and laminin by
western blotting in lung of mice after infection (Fig.
4A). Collagen IV and fibronectin, specific substrates
of MMP-9, but not laminin, largely disappeared fol-
lowing influenza A WSN virus infection, but treat-
ment of the mice with PDTC, NAC, or NDGA res-
cued the loss of collagen IV and fibronectin. The
lungs of infected mice showed macroscopic lesions
by day 4 postinfection (Fig. 4B). The inhibitor treat-
ments with PDTC, NAC, and NDGA also restricted
these pathological changes in the lungs of infected
mice.

DISCUSSION

The present study reported several new obser-
vations : 1) influenza A WSN virus infection results
in marked upregulation of proinflammatory cytokine
TNF-α and matrix-degrading enzyme MMP-9 in
the lung, as initial site of infection, as well as in the
brain and heart ; and 2) anti-TNF-α antibodies and
inhibitors of AP-1, NF-κB and MAPKs effectively
suppressed MMP-9 upregulation in vivo . Consid-
ered together, these findings indicate that influenza
A virus infection upregulates the expression of
MMP-9 via TNF-α -mediated activation of MAPK-
NF-κB- and/or AP-1 pathways in mice organs. JNK
signaling seems also to be partly involved.

Influenza A virus is the most common infectious
pathogen in humans, causing significant morbidity
and mortality particularly in infants and the elderly.
Multiple organ failure is observed during the ad-
vanced stage of influenza pneumonia, and although
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Fig. 3 Phosphorylation of p38, ERK1/2, and JNK MAPKs by
influenza A WSN virus infection in the brain, lung, and heart of
mice, and the effects of inhibitors of MAPK signaling pathways
on the MMP-9 upregulation.
(A) Phosphorylation (P-) levels of ERK1/2, JNK, and p38 MAPK
in the extracts (30 μg) of brain, lung, and heart of the mice with
and without influenza A WSN virus infection were detected by
western blotting at 4 days postinfection. Equal lane loading was
confirmed by detecting blots for total MAPKs. (B) Effects on
MMP-9 upregulation by influenza A WSN virus infection at 4
days postinfection using specific inhibitors of ERK (U0126), JNK
(SP600125), and p38 MAPK (SB203580) were analyzed by gela-
tin zymography as described in the Materials and Methods.
Control column shows MMP-9 levels without viral infection. Rep-
resentative example of three experiments with similar results.
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Fig. 4 Lung injury in mice after influenza A WSN virus infec-
tion and effects of inhibitors of NF-κB and AP-1, PDTC, NAC,
and NDGA, on the lung injury.
(A) ECM proteins (collagen IV, fibronectin and laminin) in the
lungs of mice at 4 days postinfection, were analyzed by western
blotting. (B) Lungs of mice before infection (at day 0) and at 4
days postinfection were removed and examined under the micro-
scope after perfusion.
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rare, encephalopathy with severe brain edema oc-
curs in children and is often fatal. However, the re-
lationship amongst virus and host factors that in-
fluences the progression of influenza virus infection
and the subsequent lethal effects remains unclear.
The present study focused on the upregulation of
MMP-9 by influenza A WSN virus infection. This
protease degrades type IV collagen in the basement
membrane of endothelial cells and may play an im-
portant role in multiple organ failure and edema. We
also studied the relationship between proinflamma-
tory cytokine TNF-α and MMP-9 and the mecha-
nisms underlying the upregulation and possible in-
hibition of MMP-9.

TNF-α is produced by many types of cells in vari-
ous pathological conditions including influenza virus
infection (33, 34). TNF-α upregulation by influenza
A virus infection in mice stimulated the expression
of MMP-9 in various mice organs in this study via
MAPK-NF-κB- and/or AP-1-dependent mecha-
nisms. Signals from extracellular stimuli are trans-
mitted to the nucleus through activation of intracellu-
lar signaling kinases, such as the MAPK superfamily
(35). MAPKs mediate signals from cell membrane

receptors triggered by TNF-α and involve in the ex-
pression of components involved in MMP-9 pro-
moter induction by transcription factors AP-1 and
NF-κB (8). The results obtained in this study impli-
cated MAPK-NF-κB and/or AP-1 signaling path-
way as important in the TNF-α -mediated upregu-
lation of MMP-9 after influenza A virus infection ;
this concept is represented schematically in Fig. 5.

The transcriptional downregulation of MMP-9 in
virus-infected mice could involve specific NF-κB or
AP-1 inhibitors such as the ones used here (PDTC,
NAC, and NDGA) or inhibition of MAPKs including
ERK1/2, p38, and possibly JNK. PDTC could stabi-
lize cytosolic IκB-α, an inhibitor of NF-κB, by in-
hibiting IκB-α ubiquitination, and this stabilization
reduces nuclear NF-κB activation (26). NAC exhib-
its a chemoprotective effect, which is mediated by
counteracting NF-κB activation by decreasing IκB-
α phosphorylation and IκB kinases, leading to phos-
phorylation and subsequent degradation of IκBs
(27). NDGA, momordin I, a natural inhibitor of fos-
jun/DNA complex formation, was found to decrease
the apparent equilibrium binding of the dimers and
DNA (28). It was reported previously that TNF-α

Fig. 5 Schematic diagram of the mechanisms of TNF-α - induced MMP-9 upregulation by influenza A WSN virus infection in mice.
Upregulation of MMP-9 in various organs by influenza via MAPK-NF-κB- and/or AP-1-dependent mechanisms, predominantly through
p38 and ERK1/2 (bold lines), and partly via JNK (dotted lines). NF-κB inhibitors, NAC and PDTC, and AP-1 inhibitor, NDGA, effec-
tively suppressed (�) MMP-9 upregulation. See text for abbreviations.
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induces MMP-9 in various pathological conditions
by activation of NF-κB and AP-1, which bind to the
MMP-9 promoter (36, 37). The present study iden-
tified the mechanism involved in influenza A WSN
virus infection-induced upregulation of MMP-9 in
various organs, and showed that this upregulation
could be suppressed using inhibitors NF-κB and
AP-1 activation.

In conclusion, the present study implicates MMP-
9 upregulation in various organs by influenza A
WSN virus infection via MAPK-NF-κB- and/or AP-
1-dependent mechanisms. NF-κB and AP-1 inhibi-
tors, PDTC, NAC, and NDGA, effectively suppressed
MMP-9 upregulation as well as prevented the asso-
ciated tissue destruction. Since MMP-9 upregula-
tion may be one of the events mediated by TNF-α
induction and/or by influenza virus infection, fur-
ther studies are required to elucidate the effects of
MMP-9 and other unknown host factors induced by
TNF-α on influenza-associated tissue destruction
and inflammation. These results advance our un-
derstanding of the mechanisms underlying influenza
viral infection and the virus-host interactions and
should guide future studies, to ultimately improve
the treatment options for influenza virus infection.
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