EXPANDED ABSTRACT

Ca2+ mobilization by nicotine through synaptic activation in rat parotid acini

Taichi Iida1,2, Kentaro Ono2, Tomohiro Inagaki1,2, Ryuji Hosokawa1, and Kiyotoshi Inenaga2

1Department of Oral Function Reconstruction and 2Department of Biosciences, Kyushu Dental College, Kitakyushu, Japan

Abstract: Nicotine has been reported to increase the intracellular Ca2+ concentration ([Ca2+]), in sublingual acini due to neurotransmitter release from nerve terminals associated with the cell preparation (1). However, it is unclear whether or not the same reaction exists in parotid cells. Therefore, we investigated the effect of nicotine on Ca2+ mobilization in digested parotid acini from rats. After removing the parotid gland from Wistar rats, the tissues were minced and digested with collagenase. Then, the intracellular Ca2+ indicator fura-2 was added to the preparation, and the change in [Ca2+] was monitored using fluorescent microscopy. In many but not all parotid acini, K+ stimulation induced transient increases in [Ca2+]. The K+-induced Ca2+ response in parotid acini was completely blocked by Cd2+-containing solution. These results suggest that the parotid cell preparation has nerve terminals. In all high-K+-sensitive parotid acini, over 3 \textmu M of nicotine increased [Ca2+], and the response was blocked by a Cd2+-containing solution and nicotinic receptor antagonists. All high-K+-insensitive acinar cells were resistant to the effect of nicotine on Ca2+ mobilization. These results suggest that nicotine induces increases in [Ca2+], in parotid acini due to neurotransmitter release from associated nerve terminals.

J. Med. Invest. 56 Suppl. : 376, December, 2009

Keywords: nicotine, nerve terminal, parotid cells

ACKNOWLEDGEMENTS

This work was supported by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology, Japan, for Scientific Research for Young Scientists (B) to K.O. (20791357) and for Scientific Research (C) to K.I. (90131903).

REFERENCES