
STORE-OPERATED CALCIUM ENTRY :
THE BEGINNINGS IN EXOCRINE GLANDS

Store-operated or capacitative calcium entry is a
phenomenon whereby the depletion of intracellular
Ca2+ stores, generally from the endoplasmic reticu-
lum, leads to the activation of plasma membrane
Ca2+ channels (1-3). The idea developed over a dec-
ade or so from studies of the relative roles and in-
teractions of Ca2+ release and Ca2+ entry mechanisms
in salivary and lacrimal gland cells. That many cell
types utilize both intracellular release of Ca2+ to-
gether with influx of Ca2+ across the plasma mem-
brane for the generation of cytoplasmic Ca2+ signals
have been appreciated for some time (4, 5). In sali-
vary gland cells, it was shown that the Ca2+ stores
released by activation of autonomic receptors (mus-
carinic, α -adrenergic, substance P) required Ca2+ in-
flux through activated Ca2+ channels for their replen-
ishment (6). In the late 1970’s and early 1980’s, two
key findings influenced thinking on how these two
modes of signaling might interact. First, it became
clear that the source of intracellular Ca2+ for the re-
lease phase of responses was the endoplasmic re-
ticulum (7, 8). Second, the signal for the release of
Ca2+ from the endoplasmic reticulum was shown to
be the soluble product of phospholipase C activation,
inositol 1,4,5-trisphosphate (IP3) (9, 10).

The first hint that intracellular stores might direct
the activity of plasma membrane Ca2+ channels came
from the observation in lacrimal gland cells that
stores refilled rapidly following their emptying, and
this rapid refilling did not require receptor activa-
tion (11). Casteels and Droogmans (12) speculated
that in smooth muscle, this rapid refilling might oc-
cur through a direct route, not traversing the cyto-
plasm. Subsequent studies, however, showed that
this could not be the case (13, 14). The general con-
cept of store-operated entry was articulated in an
hypothesis paper in Cell Calcium in 1986 (1). Sub-
sequently, two key observations, both made using
salivary gland cells, provided strong evidence for the
concept.

The first was a publication essentially confirming
the 1978 report showing by use of Ca2+ indicators
that Ca2+ influx occurred in the absence of receptor
activation, when Ca2+ stores were depleted (15). The
second was the demonstration that depletion of Ca2+

stores by a mechanism independent of phospholi-
pase C signaling quantitatively and qualitatively re-
capitulated the Ca2+ entry activated through phos-
pholipase- linked receptors. This latter publication
demonstrated for the first time the activation of Ca2+

entry by the SERCA pump inhibitor, thapsigargin
(16). Since then, thapsigargin has come to repre-
sent the clearest pharmacological indicator for store-
operated Ca2+ entry.

In 1992, the first demonstration of a store - oper-
ated Ca2+ current was published by Hoth and Penner
(17). This current was measured by use of the
whole-cell patch clamp mode in mast cells, and was
subsequently shown to be similar in T-cells (18).
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Hoth and Penner called the current Icrac, for calcium
release-activated calcium current. Icrac was shown
to develop rather slowly (10s of seconds) following
Ca2+ store depletion, and to be highly Ca2+ selective
and strongly inwardly rectifying. The single chan-
nel conductance is thought to be extremely small,
estimated by noise analysis to be in the fS range
(18, 19). As is the case for other Ca2+-selective chan-
nels, the selectivity for Ca2+ is lost in low divalent cat-
ion solutions, permitting measurements of larger
whole-cell Na+ currents (20).

THE MOLECULAR COMPONENTS OF
SOCE

For a full twenty years following the first formu-
lation of the concept of store-operated Ca2+ entry, in-
vestigations moved in fits and starts attempting to re-
solve two fundamental questions : what is the nature
of the signal from the endoplasmic reticulum, and
what is the identity of the Ca2+ channel? Numerous
candidates for the signaling mechanism came and
went, including cyclic GMP, arachidonic acid me-
tabolites, inositol 1,3,4,5-tetrakisphosphate, and the
IP3 receptor to name a few (3). One idea, that a dif-
fusible substance termed “calcium influx factor” or
CIF has received continuing support from a limited
number of laboratories (21-24). While the role of
such a factor is possible within the context of the
Ca2+ sensor STIM1 (discussed below), the major im-
pediment to understanding the function of CIF is the
lack of knowledge of its structure. This prevents the
majority of laboratories from following up on the
published findings of a few, since its formation and
action can only be investigated through use of tedi-
ous methods of partial purification and reconstitu-
tion.

Remarkably, in 2005 the powerful use of RNAi-
based genetic screens revealed the endoplasmic re-
ticulum Ca2+ sensor, and one year later, the SOC
channel. The Ca2+ sensor, STIM1, was reported by
two laboratories within a few weeks of one another
(25, 26). STIM1, and in vertebrates it’s close relative
STIM2, are single pass membrane proteins. STIM1
is found in the endoplasmic reticulum and plasma
membrane, while STIM2 appears to be exclusively
in the endoplasmic reticulum (27). The function of
STIM1 in the plasma membrane, at least in the con-
text of SOCE, is unknown since constructs incapa-
ble of reaching the plasma membrane are fully ca-
pable of supporting SOCE (28). There is evidence

that STIM1 in the plasma membrane plays a role in
the function of non-store-operated arachidonic acid
gated channels (29). Much of the key domain struc-
ture of STIM1 is known (Fig. 1). The N-terminus is

directed towards the lumen of the endoplasmic re-
ticulum. Therein lies the Ca2+ binding domain, an
unpaired EF-hand. Immediately downstream is a
sterile alpha motif (SAM) domain which is known
to mediate protein-protein interactions, and interest-
ingly also protein RNA interactions. When Ca2+ dis-
sociates from the EF hand, this causes a conforma-
tional change in the EF-hand and SAM domains
causing them to interact, initially dimerize and then
to oligomerize (26, 30-32). STIM1 then aggregates
in discrete subplasmalemmal sites where it appar-
ently can interact directly with Orai channel mole-
cules and activate them (33, 34). This is accom-
plished through a coiled-coiled domain first de-
scribed by Yuan, et al. as a SOAR (STIM-Orai acti-
vating region) domain (35), and rapidly confirmed
by three additional laboratories (34, 36, 37).

The evidence is very strong that Orai proteins
constitute the pore forming subunits of the store-
operated or CRAC channel. Overexpression of
STIM1 and Orai1 produces huge Icrac (28, 38-40).
Mutation of a glutamate at position 106 in human
Orai1 to alanine or glutamine results in an inactive
channel, while the more conservative mutation to as-
partate results in a channel with altered selectivity
(41-43).

ROLE OF SOCE IN CALCIUM OSCILLA-
TIONS

In most non-excitable cells, including exocrine
gland cells, activation of Ca2+-mobilizing receptors

Figure 1. The domain structure of STIM1 includes a calcium
sensing EF Hand, a sterile alpha motif (SAM), a single transmem-
brane domain (TM) and Orai - interacting SOAR domain, a regula-
tory (Regul.) domain in which numerous phosphorylation sites
reside, and a C-terminal basic region that may be involved in in-
teractions with plasma membrane acidic phospholipids.
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does not produce a sustained elevation in [Ca2+]i, but
rather a series of Ca2+ spikes superimposed on a
steady baseline. This phenomenon is generally re-
ferred to as Ca2+ oscillations (44, 45). The process
of repetitive Ca2+ oscillations in epithelial cells was
first inferred from fluctuations in chloride current by
Berridge (46), and first directly demonstrated in he-
patocytes by Cobbold (47). The major hallmark of
these regenerative cytoplasmic Ca2+ spikes is their
constant amplitude but variable frequency as a func-
tion of stimulus strength (45, 47). Such behavior is
typical of an excitable process and requires some
kind of positive feedback process to produce all-or-
none rises in [Ca2+]i together with a shut-off or de-
pletion mechanism to limit the size of the spikes.
Despite decades of research, there is as yet no gen-
eral consensus as to the nature of the key elements
underlying cytoplasmic Ca2+ oscillations. This may
be because multiple mechanisms exist that play dif-
ferent roles depending on the cell type and nature
of the activating signal. There are two general mod-
els for cytoplasmic Ca2+ oscillations. One involves
a positive feed back by Ca2+ on phospholipase C,
causing fluctuations in IP3 levels (47-49). With this
model, IP3 levels oscillate and Ca2+ signals reflect
these changes in IP3. In the alternative view, IP3

would remain constant, and the positive feed back
would arise from Ca2+-induced activation of the IP3

receptor.
The maintenance of Ca2+ oscillations requires in-

flux of extracellular Ca2+ (45). In addition, it has
been demonstrated that influx of Ca2+ during oscil-
lations is primarily responsible for the activation of
downstream responses, such as gene expression
(50). Thus, it is important to understand the nature
of this Ca2+ influx mechanism. There has been some
controversy regarding this issue ; although it is well
accepted that maximal concentrations of agonists ac-
tivate Ca2+ entry through the store-operated mecha-
nism, it has been suggested that with low, more
physiological concentrations of agonists, other non-
store-operated entry pathways may be more signifi-
cant (51).

We examined the Ca2+ entry supporting Ca2+ os-
cillations in a kidney cell line by using a combina-
tion of pharmacological and molecular criteria (52,
53). The data strongly indicate that it is the classical
store-operated mechanism that supports these os-
cillations. Specifically : the oscillations were blocked
by agents known to block store-operated channels,
and in the same and unique concentration ranges
wherein store-operated channels are affected (52) ;

and oscillations were blocked by RNAi knockdown
of either the Ca2+ sensor, STIM1, or the SOC chan-
nel subunit, Orai1 (53). Interestingly, the oscillations
were blocked by knockdown of STIM1, but were
unaffected by knocking down STIM2, despite the
fact that STIM2 is expected to be more active with
small reductions in Ca2+ store content (54). This sug-
gests that Ca2+ oscillations are capable of transiently
lowering store content in critical sites into the range
sensed by STIM1, and that STIM1 may thus be spe-
cially adapted to interacting with Orai channels to
produce effective activation of downstream signals
(54).

CONCLUSION

In exocrine gland cells, Ca2+ signalling underlies
the activation and control of secretory processes. A
major component of these Ca2+ signals is the entry
of Ca2+ across the plasma membrane through store-
operated channels. In recent years, much has been
learned of the molecular nature of store-operated
channels, composed of Orai subunits as well as the
Ca2+ sensors, STIM1 and 2, that initiate store-oper-
ated signaling. We look forward to continuing stud-
ies of the functions and regulation of these key Ca2+

signaling proteins and to a better understanding of
their roles in exocrine physiology.
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