INTRODUCTION

Water channel protein family, AQPs, is consisted of a group of membrane proteins which facilitate water movement across the plasma membrane. There are 13 types of AQPs in mammalian tissues and they are distributed in almost all types of the tissue. A member of the family, AQP5 had been identified in various glandular tissues of exocrine type (1, 2) including the SMG (3). The SMG is controlled by parasympathetic nerves and innervated through chorda tympani. Previous report on the effect of CTD showed that AQP5 protein levels in the rat SMG were significantly decreased (4). To clarify the cause of AQP5 down-regulation, we analyzed the possible mechanism in this study.

METHODS

Seven-week-old male Sprague-Dawley rats, weighing 170-190 gram were purchased from SLC (Shizuoka, Japan). Some of them are known to express a mutant AQP5, which expression at the acinar cell membrane in the SMG is extremely reduced (5). Rats with normal AQP5 sequences were therefore selected for the present study. Chorda tympani denervation was performed under anesthesia with Nembutal (sodium pentobarbital, 50 mg/kg body weight) as described previously (6). All the

PROCEEDING

Down-regulation of submandibular gland AQP5 following parasympathetic denervation in rats

Ahmad Azlina¹, Xuefei Li², Purevjav Javkhlan¹², Takahiro Hasegawa¹, Chenjuan Yao¹, Tetsuya Akamatsu¹, and Kazuo Hosoi¹

¹Department of Molecular Oral Physiology, ²Department of Periodontology and Endodontontology, Institute of Health Biosciences, the University of Tokushima Graduate School, Tokushima, Japan; and ³International Division, Otsuka Pharmaceutical Factory, Inc., Naruto, Japan

Abstract: Following chorda tympani denervation (CTD, parasympathectomy), the protein levels of aquaporin5 (AQP5) as well as AQP1 and Na’K’ATPase α-subunit in the rat submandibular gland (SMG) were found to be decreased significantly. However, the level of another membrane protein, dipeptidyl peptidase IV was not affected by CTD, suggesting a selective reduction of AQP5, AQP1, and Na’K’ATPase α-subunit proteins by CTD. However, the AQP5 mRNA level was scarcely affected by CTD, which suggested that transcription process of AQP5 was unaffected by this operation. AQP5 protein was shown to be degraded in vitro by the extract of the SMG obtained from normal rat; inhibitor experiments in vitro suggested cathepsin B was a responsible enzyme. Co-localization of AQP5 and LAMP-2, a lysosomal marker, implicated AQP5 is degraded in lysosomes. A significant increase in the protein levels of LC3-II, an autophagy marker, at day 1 after CTD, and co-localization of the LC3 protein and AQP5, suggested that CTD activated autophagy of SMG, leading to AQP5 degradation. J. Med. Invest. 56 Suppl.: 273-276, December, 2009

Keywords: chorda tympani denervation, AQP5, degradation, autophagy
experimental protocol was approved by the Animal Ethical Committee of the University of Tokushima. The SMG tissues were processed for the assay for lysosomal enzymes activity, Western blotting, Northern blotting, and immunohistochemistry. Some of the untreated rats were sacrificed for preparation of the total membrane fraction and the SMG extract, which samples were subjected to the in vitro degradation assay of AQP5.

RESULTS AND DISCUSSION

Effects of CTD on the SMG weight and the AQP5 expression level were examined. After CTD, the SMG weight was decreased but only for 1 week (Fig. 1a). The AQP5 level, on the other hand, continuously decreased until week 4 (Fig. 1b). Western blotting of AQP1 and Na⁺K⁺ATPase α-subunit showed a similar decrease. Administration of cevimeline hydrochloride (CM), an M3 muscarinic agonist, recovered the AQP5 and AQP1 protein levels reduced by CTD, but not the protein levels of Na⁺K⁺ATPase α-subunit. Also, another membrane protein, dipeptidyl peptidase IV was scarcely affected by CTD and CM administration. These results suggested the selectivity of AQP5 protein reduction following CTD and/or effects of CM.

Northern blotting and real-time PCR experiments showed that the level of AQP5 mRNA was not affected by CTD suggesting that AQP5 mRNA transcription was not involved in the decrease of AQP5 protein levels. However, treatment of the CTD rats

Figure 1 Effects of CTD on the weight and AQP5 protein levels of rat SMG. a. Relative weight of SMG between non-treated (NT) samples and denervated samples (CTD). b. Ratios of AQP5 protein levels of NT and CTD samples. Turkey’s multiple analysis was then applied as a post hoc test. † P<0.05, †† P<0.01, significantly different from the NT group before the operation (0 wk). Modified from Li, et al. (4).
by chloroquine suppressed AQP5 reduction after the operation. Since chloroquine is a lysosomal denaturant, such results suggest involvement of the lysosomal degradation pathway in AQP5 reduction following CTD. The in vitro experiments showed that AQP5 can be degraded by the SMG extract which contains various proteolytic enzymes. The degradation experiment using inhibitors for aspartic proteases, serine/threonine proteases, and cysteine proteases showed that cathepsin B, one of cysteine proteases in the SMG extract, was responsible for AQP5 degradation. Since cathepsin B is a lysosomal enzyme, and since this result implied the involvement of lysosome, immunohistochemistry of AQP5 and LAMP-2, a lysosomes marker was conducted; the results showed that the two proteins were co-localized, suggesting that AQP5 is degraded in lysosomes by cathepsin B (Fig. 2a). However, the ratio of co-localized structure among the total AQP5 positive structures was not altered after CTD and remained same, implying that degradation by this pathway was not elevated by CTD (Fig. 2b, c, d).

By Western blotting, on the other hand, LC3-II, an autophagy marker (7), potentially increased at day 1 after CTD and gradually decreased thereafter which suggested that CTD activated autophagy. The number of LC3 positive structure was shown to be co-localized with AQP5 and significantly increased at day 1 after CTD, suggesting that autophagy is involved in AQP5 degradation.

CONCLUSION

In acinar cells of the rat SMG, AQP5 was shown to be degraded in lysosomes by cathepsin B although this process was not elevated by CTD. CTD

Figure 2 Confocal image of co-localization of AQP5 and LAMP-2, a lysosomal marker, in frozen section of the rat SMG tissue. a. Sample of non-treated rat. b. 1 day after CTD. c. 7 days after CTD. d. 14 days after CTD. Anti-AQP5 antibody of acinar cells was labeled with green fluorescence of 549 Alexa whereas LAMP-2, with punctate red fluorescence of 488 Alexa. The number of co-localization between the two antibodies was not elevated after CTD.
rather activated autophagy which was suggested to
degradate AQP5 consequently.

ACKNOWLEDGEMENTS

This work was supported by Grants-in Aid for
Scientific Research (B) (No 18390493) from the
Ministry of Education, Culture, Science, Sports and
Technology of Japan.

REFERENCES

1. Parvin MN, Kurabuchi S, Murdiastuti K, Yao C,
Kosugi-Tanaka C, Akamatsu T, Kanamori N,
Hosoi K: Subcellular redistribution of AQP5
by vasoactive intestinal polypeptide in the
Brunner’s gland of the rat duodenum. Am J
Physiol Gastrointest Liver Physiol 288 : G1283-
G1291, 2005
2. Parvin MN, Tsumura K, Akamatsu T, Kanamori
N, Hosoi K: Expression and localization of
AQP5 in the stomach and duodenum of the rat.
Biochimica et Biophysica Acta (BBA)-Molecu-
lar Cell Research 1542 (1-3) : 116-124, 2002
3. Raina S, Preston GM, Guggino WB, Agre P:
Molecular-cloning and characterization of an
aquaporin cDNA from salivary, lacrimal, and
respiratory tissues. J Biol Chem 270 : 1908-
1912, 1995
4. Li X, Azlina A, Karabasil MR, Purwanti N,
Hasegawa T, Yao C, Akamatsu T, Hosoi K:
Degradation of submandibular gland AQP5 by
parasympathetic denervation of chorda tympani
and its recovery by cevimeline, an M3 mus-
carinic receptor agonist. Am J Physiol Gastro-
intest Liver Physiol 295 : G112-G123, 2008
5. Murdiastuti K, Purwanti N, Karabasil MR, Li
X, Yao C, Akamatsu T, Kanamori N, Hosoi K:
A naturally occurring point mutation in the rat
aquaporin 5 gene, influencing its protein pro-
duction by and secretion of water from salivary
glands. Am J Physiol Gastrointest Liver Physiol
291 : G1081-G1088, 2006
6. Yao C, Li X, Murdiastuti K, Kosugi-Tanaka C,
Akamatsu T, Kanamori N, Hosoi K: Lipopoly-
saccharide-induced elevation and secretion
of interleukin-1β in the submandibular gland
of male mice. Immunology 116 (2) : 213-222,
2005
Autophagosome Marker, Can be Incorporated
into Protein Aggregates Independent of Auto-
phagy : Caution in the Interpretation of LC3