
All exocrine glands and several other organs,
such as the lung and kidney, develop by a basic de-
velopmental process known as branching morpho-
genesis (BrM) (Fig. 1). In this process, a lining epi-
thelium grows into mesenchyme, which condenses
around the epithelium as a capsule. The epithelium
elongates to form a stalk that ends in a rounded
endpiece. A cleft or groove indents the distal end
of the epithelium, marking the site where the epi-
thelium will elongate into two branches, ending in
rounded endpieces. The original elongated stalk
acquires a lumen to become a duct. A cleft forms
at the distal ends of the new endpieces, and the
process of branching, lumen formation, and further

clefting is repeated over and over again until the
desired size of the organ is achieved.

The SMG rudiment arises on the 12th day of fe-
tal life, referred to as E12, as a downgrowth of the
oral epithelium, and by E13 the epithelium has
branched into 3-5 endpieces surrounded by a cap-
sule of condensed mesenchyme. The study of BrM
was greatly facilitated by the work of Elio Borghese,
who cultured rudiments of mouse fetal SMGs and
showed that BrM could be maintained in vitro (1,
2). BrM proceeded well with E14 or older SMGs,
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Figure 1. Diagram illustrating steps in branching morphogene-
sis. Epithelium in red, mesenchyme in blue. See text for expla-
nation.
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but rudiments from mice E13 of younger branched
poorly. The extent of BrM was dependent on the
amount of mesenchyme taken out with the epithe-
lium, implying that reciprocal interactions between
the epithelium and the mesenchyme are needed for
BrM. Grobstein then improved culture methods and
E13 SMGs also branched in vitro (3, 4). Moreover,
if the mesenchyme were separated from the epithe-
lium by trypsin, the epithelium failed to branch, but
BrM resumed if the epithelium was recombined
with mesenchyme (5). When denuded epithelium
was cultured across a filter from SMG mesenchyme,
abnormal BrM occurred with many long branches
ending in a terminal swelling (5). Grobstein pro-
posed that the epithelium required both direct con-
tact with mesenchyme and interaction with diffus-
ible substances of mesenchymal origin for BrM to
proceed (6). He then showed that SMG rudiments
treated with collagenase lose their branches, but
resume BrM if the enzyme is removed, demonstrat-
ing the importance of collagen (7). Later on, work-
ing with Rutter and Wessells, he concentrated more
on the development of the epithelium in the SMG
and in other tissues (8).

Wessells trained a number of talented scientists,
including Ken Yamada, Brian Spooner and Merton
Bernfield (9-11). Bernfield’s group focused on the
role of the epithelium, and defined the critical role
of the basal lamina for BrM to proceed (12-16). By
using agents that specifically interfered with the syn-
thesis of collagen or glycosaminoglycans, Spooner’s
group showed that both of these ECM components
are needed for BrM (17-20).

Nogawa and Nakanishi, working independently or
in collaboration, intensively studied the role of col-
lagens in BrM of the SMG, and began to introduce
specificity into the analysis of the mesenchyme by
defining the spatial distribution of different types
of collagen, and showed that while collagen I was
widely dispersed in the mesenchyme, type III col-
lagen preferentially localized at the points of cleft-
ing, and at the constrictions between the stalk and
the endpiece (21-27). They also established that
BrM could proceed in the absence of cell prolifera-
tion (28).

Kadoya and Yamashina very thoroughly char-
acterized the fine structure of the basal lamina
of the SMG, and studied the epithelial synthesis
of two of its components, laminin and collagen IV
(29, 30). They then demonstrated the presence of
the alpha-6 subunit of the integrin receptor for
laminin on the basal surface of the fetal SMG

epithelium (31). Kadoya and his coworkers then
showed that laminins and alpha-6 and beta-1 in-
tegrin subunits are needed for BrM, and defined
the roles of specific laminin chains, and even spe-
cific domains in these laminins that are required for
BrM (32-35). This and much more of his work is
summarized in their excellent review article (36).

In 1991 Nogawa and Takahashi revolutionized
the research on BrM in the SMG by showing that
clefting and endpiece formation take place in epi-
thelium stripped of its mesenchyme, and then cov-
ered with the basal lamina equivalent, Matrigel,
and EGF. If either of these were left out, the epi-
thelium formed a rounded cyst and did not branch
(37-38). Nakanishi and coworkers noted that the
epithelium formed endpieces, but not elongated
stalks that would form the ducts (39). Morita and
Nogawa then showed that elongation and stalk for-
mation are driven by the FGF system (40).

Kashimata and Gresik showed that EGF is actu-
ally physiologically important, since the mRNAs for
EGF and the EGF receptor are expressed during
fetal development of the SMG, and that EGF pro-
motes the synthesis of the alpha-6 integrin subunit
(41). They also showed that the receptor is localized
mainly in the epithelium (42). Hieda and coworkers
then established that other ligands related to EGF
and other ErbB receptors are also important for
BrM, and not only EGF, TGF-alpha and EGFR
(ErbB1), namely HB-EGF, Neuregulins, and ErbB2
and 3 (43-44). They have also studied the first signs
of cytodifferentiation by defining the roles of junc-
tional proteins in lumen formation (45-47).

Akamatsu and Hosoi and coworkers characterized
cytodifferentiation of the rat SMG by following the
expression of aquaporin-5 in the epithelium (48),
and of the proprotein convertase PACE4, which they
showed is also needed for BrM to proceed (49).

Kashimata and Koyama then demonstrated that
EGF regulates BrM by activating intracellular sig-
naling cascades involving tyrosine phosphoryla-
tion of the EGFR itself, the MAPK Erk-1/2, PLC-
gamma1, and PI3K (Akt), and showed that the pat-
tern of activation of these signaling pathways varies
with age (50-51).

Larsen and Sakai and Yamada confirmed the role
of PI3K (52) and have extensively studied the inter-
action of specific mesenchymal components and in-
tegrins important for BrM, such as fibronectin and
the alpha-5 integrin subunit (53-55). By laser cap-
ture microdissection Sakai demonstrated that fi-
bronectin mRNA is localized in the epithelium, that

The Journal of Medical Investigation Vol. 56 Supplement December 2009 229



fibronectin is deposited at the cleft site and in the
deepening cleft whene it interacts with it receptor
on the epithelial cells, alpha-5-beta-1 integrin. An-
tibodies against either of these two components in-
terfere with BrM. Many others have contributed im-
portantly to further progress in this field, but space
does not allow me to give them proper considera-
tion.

Hoffman and his coworkers at the NIH have ex-
tensively documented the critical and wide ranging
influence of the FGF signaling system for SMG de-
velopment and BrM (56-60).

Melnick and Jaskoll have demonstrated that FGF
and several other signaling systems are involved in
SMG BrM and have emphasized that regulation of
development of this gland is not linear, but rather
results from multiple interactions ; their extensive
and important work is summarized in two excellent
reviews (61-62).

Recently Nogawa and his coworkers showed that
in E12 SMGs FGF induces the epithelium to be
able to respond to EGF (63). Mesenchyme-free E12
epithelium exposed first to FGF, and then to EGF,
forms endpieces. If it is exposed to FGF and then
only to more FGF, it forms elongated stalks, as ex-
pected. If it is not exposed to FGF and then exposed
to EGF, it does not form endpieces. Koyama and
coworkers recently showed that although EGF in-
duces strong phosphorylation of Erk-1/2, FGFs are
weak inducers, highlighting the complexity of these
interactions (64).

There is a great deal of interest in the study of
BrM in the salivary glands and in other organs (e.g.
mammary gland, kidney, lung, etc). This knowledge
will help not only to elucidate mechanisms of normal
development, but will also lay a foundation for un-
derstanding abnormal growth, including tumor for-
mation, allowing for new therapeuric approaches.
Moreover, the emerging world of tissue engineer-
ing would benefit from increased understanding of
the factors driving cytodifferentiation and the estab-
lishment of tissue architecture.

Given the constraints of space, we apologize to
those scientists whose work was not cited.
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