MINI-REVIEW

Taste, visceral information and exocrine reflexes with glutamate through umami receptors

Ana San Gabriel, Eiji Nakamura, Hisayuki Uneyama, and Kunio Torii

Institute of Life Sciences, Ajinomoto Co., Inc., Kawasaki, Japan

Abstract: Chemical substances of foods drive the cognitive recognition of taste with the subsequent regulation of digestion in the gastrointestinal (GI) tract. Tastants like glutamate can bind to taste membrane receptors on the tip of specialized taste cells eliciting umami taste. In chemical-sensing cells diffused through the GI tract, glutamate induces functional changes. Most of the taste-like receptor-expressing cells from the stomach and intestine are neuroendocrine cells. The signaling molecules produced by these neuroendocrine cells either activate afferent nerve endings or release peptide hormones that can regulate neighboring cells in a paracrine fashion or travel through blood to their target receptor. Once afferent sensory fibers transfer the chemical information of the GI content to the central nervous system (CNS) facilitating the gut-brain signaling, the CNS regulates the GI through efferent cholinergic and noradrenergic fibers. Thus, this is a two-way extrinsic communication process. Glutamate within the lumen of the stomach stimulates afferent fibers and increases acid and pepsinogen release; whereas on the duodenum, glutamate increases the production of mucous to protect the mucosa against the incoming gastric acid. The effects of glutamate are believed to be mediated by G protein-coupled receptors expressed at the lumen of GI cells. The specific cell-type and molecular function of each of these receptors are not completely known. Here we will examine some of the glutamate receptors and their already understood role on GI function regulation. J. Med. Invest. 56 Suppl.: 209-217, December, 2009

Keywords: Umami taste receptor, exocrine regulation, gastrointestinal tract

INTRODUCTION

Glutamate is a non-essential amino acid that confers umami taste (savory or meaty) when is found free within foodstuffs (1). Many foods such as meats, seafood, seaweed and vegetables contain free glutamate, which plays a central role in the palatability and acceptability of food (1, 2). Psychophysical human experiments, neurophysiological, conditioned taste aversion and genetic studies suggest that umami has unique taste properties (3-10). Glutamate is also the most abundant amino acid among the 20 free amino acids in human breast milk (11). The effect of glutamate on the tongue is mediated by several G protein-coupled receptors that have been isolated from taste receptor cells: T1R1 (taste receptor type 1, member 1) and T1R3 (taste receptor type 1, member 3) (12-17), and several metabotropic glutamate receptors (mGluRs) (18-24). N-methyl D-aspartate (NMDA) and non-NMDA ionotropic glutamate receptors (iGluRs) are also found in taste cells (25-29). Agonists for iGluRs and mGluRs evoke umami taste in humans (30-31), and variations in taste receptor genes have been
recently found to correlate with umami taste perception (32-34).

UMAMI RECEPTORS IN THE TONGUE

There is a clear advantage in the conscious recognition of taste. Not only because different taste qualities are distinctively perceived in the brain, but also because allows the association of a particular chemical signal with specific visceral responses (35). Taste sensation on the tongue and nutrient chemosensing in the gut seem to share similar molecular mechanisms. Both, taste and the GI cells, express a class of G protein-coupled receptors (GPCRs) that belong to family C of seven transmembrane receptors (7TM). This family of receptors has diverse functions that in fact involve nutrient-like sensing, including amino acids, ions, or sugars (36). One of the main properties of umami taste is the synergism between glutamate and nucleotides so that the taste of glutamate is enhanced by the addition of 5'-ribonucleotides (37, 38). Among the known umami receptor-candidates, 5'-ribonucleotides stabilize the binding of glutamate only on T1R1 (39), with some differences in receptor-specificity between humans and rodent T1R1/T1R3. The rodent heterodimer binds to various amino acids, whereas the human binds specifically to glutamate (15, 16), and in both species 5'-ribonucleotides enhances the response of glutamate. The most direct evidence that links T1R1/T1R3 with umami taste is the correlation between variations in the umami taste perception with changes in receptor genes (32-34). A small percentage of the population (3.5%) has been recently found to suffer ageusia for L-glutamate (40). The most direct evidence that links T1R1/T1R3 with umami taste is the correlation between variations in the umami taste perception with changes in receptor genes (32-34).

SIGNAL TRANSDUCTION OF GPCRs INVOLVED IN UMAMI SENSING

Upon activation of the heterodimer T1R1/T1R3 in taste cells the predominant G trimeric protein that couples to the receptor separates and the βγ subunit activates phospholipase C β2, which in turns produces inositol trisphosphate (IP3) and diacylglycerol (48-52). IP3 binds to IP3 receptors (IP3R) that release Ca2+ from intracellular stores (53); and the increase of intracellular Ca2+ activates the monovalent-selective cation channel TRPM5 (54-56), which depolarize taste cells with the consequent release of ATP and stimulation of purinergic receptors of facial afferent nerve fibers (57-60). Taste receptor cells express gustducin that is a G-protein composed of α-gustducin, Gβ3, and Gγ3 (51, 61). Other G proteins that have been found in taste cells include Gaq2, Gs14, Gβ3 and Gγ13 (52, for review 62). Gustducin is a key molecule for umami signal transduction in the anterior region of the tongue, fungiform papillae (63), whereas in the circumvallate papillae (CV), the posterior region of the tongue, Go14 is the G protein co-expressed with T1R3 (52). mGluR1 shares this T1R1/T1R3 pathway relaying on the G protein Gq (64), but phospholipase C β2 is not the only signal transduction cascade for L-glutamate in taste cells. L-Glutamate in the CV strongly reduces the production of cAMP (65-66). Interestingly, taste-mGluR4 couples negatively with cAMP (19, 67) and mGluR1 also is associated to adenylyt cyclase, tyrosine kinase, and map kinase cascades in different types of cells (64). Changes in cAMP seem to play a role for umami taste at the back of the tongue (65, 68).
TASTE SIGNALING MOLECULES IN THE GI TRACT

The expression of taste receptors and taste-signaling molecules in the GI tract and the fact that only L-glutamate among the 20 amino acids can stimulate afferent endings of the vagus nerve from the stomach provides the bases for a hypothetical nutrient sensing system on the lumen of the stomach (69, 70). Indeed there are subpopulations of cells in the GI that express some of the taste signaling molecules such as α-gustducin, α-transducin and sweet, bitter and umami taste receptors (71-78) that have shown to regulate gastrointestinal function and release of signaling molecules (75-78). The chemical composition of chyme is detected on the lumen of the GI where enteroendocrine cells are the most likely first nutrient-sensing integration site. Enteroendocrine cells are diffused throughout the GI tract and secrete a great variety of hormones or signaling molecules such as gastrin (G cells), ghrelin (P or X cells), somatostatin (D cells), cholecystokinin (CCK) (I cells), serotonin (enterochromaffin cells), glucose-dependent insulinotropic peptide (GIP) (K cells), glucagon-like peptides (GLPs) and peptide YY (PYY) (L cells) (for review 70). These hormones are implicated in secretory processes at the stomach, intestine and pancreas as well as motility, blood flow and satiety (79). G cells, for instance, play a key role in acid secretion (78). They are mostly located at the mid-basal portion of gastric glands in the antrum and express the extracellular calcium-sensing receptor (CasR) (80). CasR belongs to the same GPCR family of taste receptors. We have recently localized CasR in taste cells (81) where it seems to modulate taste perception (82-84). The release of gastrin from G cells is regulated by Ca²⁺ and CaSR agonists. Gastrin targets enterochromaffin-like cells through CCK-2 receptor stimulating the release of histamine that in turn induces acid secretion from parietal cells. Thus, as shown in figure 1, the chemosensory system requires either an open endocrine cell with cytoplasmic projections to the lumen from where to detect the chemical content (green) with taste receptors that can identify the chemical composition of chyme, or closed endocrine cells (yellow) that are activated by signaling molecules secreted by neighboring cells. Both types of cells can secrete hormones or neuropeptides to the local micro circulation or afferent neurons (mostly vagal) that regulate many functions including water and electrolyte secretion. In the particular case of luminal glutamate, the vagus nerve electrophysiological activity appears to be regulated by nitric oxide (NO) and serotonin release in a cascade of events upon receptor activation that

![Nutrient sensing in the gastrointestinal tract](image)

Fig. 1 Nutrient sensing in the gastrointestinal tract
Nutrients are sensed on the surface of cells. When tastants and chemicals contact taste receptors (blue cylinder) on the apical membrane of open enteroendocrine cells (green) that are in contact with the lumen content, there is a release of hormones that reach the microcirculation or activate afferent neurons sending the message to the central nervous system (nucleus of the solitary tract, NTS). These bioactive molecules can also act on neighboring cells. The yellow cell is a closed endocrine cell.
is not completely understood yet (85). However, neuroendocrine cells are not the only cells that can detect the chemical content of the lumen. It is known for some time that gastric parietal cells can be activated by L-amino acids such as L-phenylalanine (L-Phe) through the receptor CasR. L-Phe has a high affinity for CasR and causes a significant decrease of gastric pH in a gastrin independent manner (86). We also found that the apical membrane of gastric chief cells (and possibly parietal cells, unpublished data) contain mGluR1, which could be partially responsible for the release of pepsinogen during the gastric phase of protein digestion in the presence of free L-glutamate (85, 87). Moreover, luminal L-glutamate also increases mucus gel thickness and bicarbonate secretion in the duodenum (77). The protective layer of the mucous gel of the intestinal mucosal is constantly replenished from the continuous secretion in goblet cells in a process that seems to be regulated by various glutamate receptors such as mGluR4 and CasR. What we do not understand yet is the specific location of each receptor and their molecular regulation mechanism.

SPECIFIC GLUTAMATE RECEPTORS AND THEIR FUNCTION IN GI

L-Glutamate can bind to many receptors that function as chemical sensors in the GI tract. Some like the metabotropic glutamate receptors (mGluR1 and mGluR4) are selective to glutamate, whereas others are promiscuous receptors that interact with a wide range of amino acids (Table 1) (T1R1/T1R3 and CasR) (36). What they all have in common is that belong to the same GPCR family of nutrient sensing receptors, are found in taste tissue and evoke or modulate umami taste, and have been linked to GI function regulation. This explains how a single amino acid like L-glutamate could support a broad range of functions within the GI. The capacity to bind to several receptors located in different cells makes glutamate a versatile amino acid. Glutamate can evoke umami taste, regulate gastric acid, mucous and bicarbonate secretion, intracellular pH, and influence the speed of gastric emptying upon a rich protein meal among other functions (88). Unfortunately, the exact cell-distribution in the GI tract for each receptor has not been unraveled yet probably because of the following reasons: 1) GPCRs are not highly expressed in GI cells although they are physiologically active, thus many have been only uncovered by transcript analysis; 2) because of the very low expression level, their study requires very specific antibodies; and 3) enteric cells that form a diverse cell population represent less than 1% of gut epithelial cells. A detail study of the specific distribution of these

Table 1 Known G coupled-receptor candidates that mediate the action of luminal L-glutamate, their cell distribution within the GI tract, agonists and functions they regulate, and the studies where these functions were evaluated

<table>
<thead>
<tr>
<th>Receptor</th>
<th>Location within GI</th>
<th>Affinity</th>
<th>Function</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1R1/T1R3</td>
<td>taste, stomach, intestine</td>
<td>L-glutamate, L-aspartate, L-alanine... (5’-ribonucleotide synergism)</td>
<td>umami taste bicarbonate secretion</td>
<td>15,16,17,39,41,74,77</td>
</tr>
<tr>
<td>mGluR1</td>
<td>taste, chief, parietal cells, and intestine</td>
<td>L-glutamate</td>
<td>umami taste acid and pepsinogen secretion(?) cellular alkalization</td>
<td>21,23,24,77,85</td>
</tr>
<tr>
<td>mGluR4</td>
<td>taste, intestine enterochromaffin cells</td>
<td>L-glutamate</td>
<td>umami taste mucous secretion</td>
<td>18,19,77,89</td>
</tr>
<tr>
<td>CaSR</td>
<td>taste, stomach (G-cells parietal cells) intestine</td>
<td>all L-amino acids except branched chain and positively charged amino acids</td>
<td>calcium taste and taste modulation gastrin, gastric acid, bicarbonate, and mucous secretion</td>
<td>77,81,84,86</td>
</tr>
</tbody>
</table>
receptors will aid to elucidate whether glutamate supports the release of gut hormones, besides the activation of vagal afferents.

CONCLUSION

Glutamate induces the umami taste in the oral cavity and in the GI regulates gastric acid, pepsinogen, mucous and bicarbonate secretion. mGluRs, T1R1/T1R3 and CaSR are the receptors that seem to regulate those responses by sensing free glutamate in the lumen. Taste sensation and nutrient chemosensing share similar molecular systems such as taste receptors, G proteins and intracellular signaling cascades. Enteroendocrine cells are specialized cells that have taste-like properties and release signaling molecules upon activation, but they are not the only cells that can ‘taste’ the chyme. Chief and parietal cells of the stomach also express receptors that can bind to free glutamate. At the end, glutamate seems to potentiate protein digestion by stimulating pepsinogen and gastric acid secretion while protecting the mucosa with a thicker mucous gel and bicarbonate release at the same time. Future studies may clarify the molecular mechanisms of all these effects and the cells that mediate them.

REFERENCE

7. Rolls ET, Critchley HD, Wakeman EA, Mason R : Responses of neurons in the primate taste cortex to the glutamate ion and to inosine 5’-monophosphate. Physiol Behav 59 : 991-1000, 1996
20. Toyono T, Seta Y, Kataoka S, Harada H, Morotomi T, Kawano S, Shigemoto R,
Toyoshima K : Expression of the metabotropic glutamate receptor, mGluR4a, in the taste hairs of taste buds in rat gustatory papillae. Arch Histol Cytol 65 : 91-96, 2002

23. San Gabriel A, Uneyama H, Yoshie S, Torii K : Cloning and characterization of a novel mGluR1 variant from vallate papillae that function as a receptor for L-glutamate stimuli. Chem Senses 30(suppl) : i25-i26, 2005

25. Stapleton JR, Ropper SD, Delay ER : The taste of monosodium glutamate (MSG), L-aspartic acid, and N-methyl-D-aspartate (NMDA) in rats : are NMDA receptors involved in MSG taste? Chem Senses 24 : 449-457, 1999

30. Faurion A : Are umami taste receptors sites structurally related to glutamate CNS receptor sites? Physiol Behav 49 : 905-912, 1991

42. Inoue M, Reed DR, Li X, Tordoff MG, Beauchamp GK, Bachmanov AA : Allelic variation of the Tas1r3 taste receptor gene selectively affects behavioral and neuronal taste responses to sweeteners in the F2 hybrids between C57BL/6ByJ and 129P3/J mice. J Neurosci 24 : 2296-2303, 2004

43. Bachmanov AA, Inoue M, Ji H, Murata Y, Tordoff M, Beauchamp GK : Glutamate taste and appetite in laboratory mice : physiologic
44. Maruyama Y, Pereira E, Margolskee RF, Chaudhari N, Roper SD: Umami responses in mouse taste cells indicate more than one receptor. J Neurosci 26: 2227-2234, 2006
46. Yasuo T, Kusuhara Y, Yasumatsu K, Ninomiya Y: Multiple receptor system for glutamate detection in the taste organ. Biol Pharm Bull 31: 1833-1837, 2008
56. Liu D, Liman ER: Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction ion channel TRPM5. Proc Natl Acad Sci USA 100: 15160-15165, 2003
58. Huang YJ, Maruyama Y, Dvoryanchikov G, Pereira E, Chaudhari N, Roper SD: The role of pannexin 1 hemichannels in ATP release and cell to cell communication in mouse taste buds. Proc Natl Acad Sci USA 10: 6436-6441, 2007
61. MacLaughlin SK, McKinnon PJ, Margolskee RF: Gustducin is a taste-cell specific G protein closely related to the transducins. Nature 357: 563-569, 1992
66. Trubey KR, Culpepper S, Maruyama Y, Kinnamon SC, Chaudhari N: Tastants evoke camp signal in taste buds that is independent

83. Tordoff MG, Shao H, Aricorn LK, Margolskee RF, Mosinger B, Bachmanov AA, Reed DR, MacCaughhey S: Involvement of T1R3 in calcium-magnesium taste. Physiol Genomics 34: 338-348, 2008

