
INTRODUCTION

Glutamate is a non-essential amino acid that con-
fers umami taste (savory or meaty) when is found
free within foodstuffs (1). Many foods such as
meats, seafood, seaweed and vegetables contain
free glutamate, which plays a central role in the
palatability and acceptability of food (1, 2). Psycho-
physical human experiments, neurophysiological,

conditioned taste aversion and genetic studies sug-
gest that umami has unique taste properties (3-10).
Glutamate is also the most abundant amino acid
among the 20 free amino acids in human breast
milk (11). The effect of glutamate on the tongue is
mediated by several G protein-coupled receptors
that have been isolated from taste receptor cells :
T1R1 (taste receptor type 1, member 1) and T1R3
(taste receptor type 1, member 3) (12-17), and sev-
eral metabotropic glutamate receptors (mGluRs)
(18-24). N-methyl D-aspartate (NMDA) and non-
NMDA ionotropic glutamate receptors (iGluRs) are
also found in taste cells (25-29). Agonists for iGluRs
and mGluRs evoke umami taste in humans (30-31),
and variations in taste receptor genes have been
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recently found to correlate with umami taste per-
ception (32-34).

UMAMI RECEPTORS IN THE TONGUE

There is a clear advantage in the conscious rec-
ognition of taste. Not only because different taste
qualities are distinctively perceived in the brain, but
also because allows the association of a particular
chemical signal with specific visceral responses (35).
Taste sensation on the tongue and nutrient chemo-
sensing in the gut seem to share similar molecular
mechanisms. Both, taste and the GI cells, express
a class of G protein-coupled receptors (GPCRs) that
belong to family C of seven transmembrane recep-
tors (7TM). This family of receptors has diverse
functions that in fact involve nutrient-like sensing,
including amino acids, ions, or sugars (36). One of
the main properties of umami taste is the syner-
gism between glutamate and nucleotides so that
the taste of glutamate is enhanced by the addition
of 5’ -ribonucleotides (37, 38). Among the known
umami receptor-candidates, 5’ -ribonucleotides sta-
bilize the binding of glutamate only on T1R1 (39),
with some differences in receptor-specificity be-
tween humans and rodent T1R1/T1R3. The rodent
heterodimer binds to various amino acids, whereas
the human binds specifically to glutamate (15, 16),
and in both species 5’ -ribonucleotides enhances the
response of glutamate. The most direct evidence
that links T1R1/T1R3 with umami taste is the cor-
relation between variations in the umami taste per-
ception with changes in receptor genes (32-34). A
small percentage of the population (3.5%) has been
described to suffer ageusia for L-glutamate (40)
and Single Nucleotide Polymorphisms (SNPs) at
the predicted N-terminal extracellular binding do-
main of T1R1 or T1R3 are the most common (32).
Genetically modified mice that lack either the T1R1
or T1R3 lose all responses to 5’ -ribonucleotides
(inosine 5’ -monophosphate, IMP) and the behav-
ioral attraction to a brief exposure to L-glutamate
and L-amino acids (17). However, T1R3 knock out
(KO) mice are still able to recognize the taste of
umami substances during a 48-hour two-bottle pref-
erence test (41). Since neuronal and behavioral re-
sponses to L-glutamate in the second filial genera-
tion (F2) between the inbred mouse C5BL/6ByJ
and 129P3/J with allelic variations of T1R3 were not
affected (42-43), and the functional responses to L-
glutamate with Ca2+ imaging in slice preparations

from the vallate of T1R3 (KO) mice persists (44),
umami taste detection seems to depend on multiple
receptors (45). Certain mutations in the mGluR1
gene have been also associated with phenotype
variations in the perception of monosodium gluta-
mate (MSG) in humans (32, 34). Altogether, it has
been suggested that there could be additional re-
ceptors for different umami substances or not well-
understood interactions among the already cloned
ones (45). Others proposed that T1R1/T1R3 might
play a role in the anterior tongue, whereas mGluRs
work in the posterior tongue contributing to the dis-
crimination among umami and other taste qualities
(46, 47).

SIGNAL TRANSDUCTION OF GPCRs IN-
VOLVED IN UMAMI SENSING

Upon activation of the heterodimer T1R1/T1R3
in taste cells the predominant G trimeric protein that
couples to the receptor separates and the βγ subunit
activates phospholipase C β2, which in turns pro-
duces inositol triphosphate (IP3) and diacylglycerol
(48-52). IP3 binds to IP3 receptors (IP3R3) that re-
lease Ca2+ from intracellular stores (53) ; and the in-
crease of intracellular Ca2+ activates the monovalent-
selective cation channel TRPM5 (54-56), which de-
polarize taste cells with the consequent release of
ATP and stimulation of purinergic receptors of fa-
cial afferent nerve fibers (57-60). Taste receptor
cells express gustducin that is a G-protein com-
posed of α -gustducin, Gβ3, and Gγ3 (51, 61). Other
G proteins that have been found in taste cells in-
clude Gαi2, Gα14, Gβ3 and Gγ13 (52, for review
62). Gustducin is a key molecule for umami signal
transduction in the anterior region of the tongue,
fugiform papillae (63), whereas in the circumvallate
papillae (CV), the posterior region of the tongue,
Gα14 is the G protein co-expressed with T1R3 (52).
MGluR1 shares this T1R1/T1R3 pathway relaying
on the G protein Gq (64), but phospholipase C β2
is not the only signal transduction cascade for L-
glutamate in taste cells. L-Glutamate in the CV
strongly reduces the production of cAMP (65-66).
Interestingly, taste-mGluR4 couples negatively with
cAMP (19, 67) and mGluR1 also is associated to
adenylate cyclase, tyrosine kinase, and map kinase
cascades in different types of cells (64). Changes
in cAMP seem to play a role for umami taste at the
back of the tongue (65, 68).
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TASTE SIGNALING MOLECULES IN THE
GI TRACT

The expression of taste receptors and taste-sig-
naling molecules in the GI tract and the fact that
only L-glutamate among the 20 amino acids can
stimulate afferent endings of the vagus nerve from
the stomach provides the bases for a hypothetical
nutrient sensing system on the lumen of the stom-
ach (69, 70). Indeed there are subpopulations of
cells in the GI that express some of the taste sig-
naling molecules such as α -gustducin, α -transducin
and sweet, bitter and umami taste receptors (71-78)
that have shown to regulate gastrointestinal func-
tion and release of signaling molecules (75-78). The
chemical composition of chyme is detected on the
lumen of the GI where enteroendocrine cells are
the most likely first nutrient-sensing integration site.
Enteroendocrine cells are diffused throughout the
GI tract and secrete a great variety of hormones or
signaling molecules such as gastrin (G cells), ghre-
lin (P or X cells), somatostatin (D cells), chole-
cystokinin (CCK) (I cells), serotonin (enterochro-
maffin cells), glucose-dependent insulinotropic pep-
tide (GIP) (K cells), glucagons-like peptides (GLPs)
and peptide YY (PYY) (L cells) (for review 70).
These hormones are implicated in secretory proc-
esses at the stomach, intestine and pancreas as well

as motility, blood flow and satiety (79). G cells, for
instance, play a key role in acid secretion (78). They
are mostly located at the mid-basal portion of gas-
tric glands in the antrum and express the extracel-
lular calcium-sensing receptor (CasR) (80). CasR
belongs to the same GPCR family of taste recep-
tors. We have recently localized CasR in taste cells
(81) where it seems to modulate taste perception
(82-84). The release of gastrin from G cells is regu-
lated by Ca2+ and CaSR agonists. Gastrin targets
enterochromaffin-like cells through CCK-2 recep-
tor stimulating the release of histamine that in turn
induces acid secretion from parietal cells. Thus, as
shown in figure 1, the chemosensory system re-
quires either an open endocrine cell with cytoplas-
mic projections to the lumen from where to detect
the chemical content (green) with taste receptors
that can identify the chemical composition of chyme,
or closed endocrine cells (yellow) that are activated
by signaling molecules secreted by neighboring
cells. Both types of cells can secrete hormones or
neuropeptides to the local micro circulation or af-
ferent neurons (mostly vagal) that regulate many
functions including water and electrolyte secretion.
In the particular case of luminal glutamate, the va-
gus nerve electrophysiological activity appears to be
regulated by nitric oxide (NO) and serotonin release
in a cascade of events upon receptor activation that

Fig. 1 Nutrient sensing in the gastrointestinal tract
Nutrients are sensed on the surface of cells. When tastants and chemicals contact taste receptors (blue cylinder) on the apical mem-
brane of open enteroendocrine cells (green) that are in contact with the lumen content, there is a release of hormones that reach
the microcirculation or activate afferent neurons sending the message to the central nervous system (nucleus of the solitary tract,
NTS). These bioactive molecules can also act on neighboring cells. The yellow cell is a closed endocrine cell.
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is not completely understood yet (85). However,
neuroendocrine cells are not the only cells that
can detect the chemical content of the lumen. It is
known for some time that gastric parietal cells can
be activated by L-amino acids such as L-phenyla-
lanine (L-Phe) through the receptor CasR. L-Phe
has a high affinity for CasR and causes a significant
decrease of gastric pH in a gastrin independent man-
ner (86). We also found that the apical membrane
of gastric chief cells (and possibly parietal cells, un-
published data) contain mGluR1, which could be
partially responsible for the release of pepsinogen
during the gastric phase of protein digestion in the
presence of free L-glutamate (85, 87). Moreover, lu-
minal L-glutamate also increases mucus gel thick-
ness and bicarbonate secretion in the duodenum
(77). The protective layer of the mucous gel of the
intestinal mucosal is constantly replenished from the
continuous secretion in goblet cells in a process that
seems to be regulated by various glutamate recep-
tors such as mGluR4 and CasR. What we do not un-
derstand yet is the specific location of each recep-
tor and their molecular regulation mechanism.

SPECIFIC GLUTAMATE RECEPTORS AND
THEIR FUNCTION IN GI

L-Glutamate can bind to many receptors that

function as chemical sensors in the GI tract. Some
like the metabotropic glutamate receptors (mGluR1
and mGluR4) are selective to glutamate, whereas
others are promiscuous receptors that interact with
a wide range of amino acids (Table 1) (T1R1/T1R3
and CasR) (36). What they all have in common is
that belong to the same GPCR family of nutrient
sensing receptors, are found in taste tissue and
evoke or modulate umami taste, and have been
linked to GI function regulation. This explains how
a single amino acid like L-glutamate could support
a broad range of functions within the GI. The ca-
pacity to bind to several receptors located in differ-
ent cells makes glutamate a versatile amino acid.
Glutamate can evoke umami taste, regulate gastric
acid, mucous and bicarbonate secretion, intracellular
pH, and influence the speed of gastric emptying
upon a rich protein meal among other functions
(88). Unfortunately, the exact cell-distribution in the
GI tract for each receptor has not been unraveled
yet probably because of the following reasons : 1)
GPCRs are not highly expressed in GI cells al-
though they are physiologically active, thus many
have been only uncovered by transcript analysis ;
2) because of the very low expression level, their
study requires very specific antibodies ; and 3) en-
teroendocrine cells that form a diverse cell popula-
tion represent less than 1% of gut epithelial cells.
A detail study of the specific distribution of these

Table 1 Known G coupled-receptor candidates that mediate the action of luminal L-glutamate, their cell distribution within the GI
tract, agonists and functions they regulate, and the studies where these functions were evaluated

Receptor Location
within GI Affinity Function Reference

T1R1/T1R3 taste cells, stomach,
intestine

L-glutamate,
L-aspartate
L-alanine...
(5’ - ribonucleotide
synergism)

umami taste
bicarbonate
secretion

15,16,17
39,41,74
77

mGluR1 taste cells, chief,
parietal cells,
and intestine

L-glutamate umami taste
acid and
pepsinogen
secretion(?)
cellular
alkalinization

21,23,24
77,85

mGluR4 taste, intestine
enterochromaffin
cells

L-glutamate umami taste
mucous secretion

18,19,77
89

CaSR taste, stomach
(G-cells
parietal cells)
intestine

all L -amino
acids except
branched chain
and positively
charged
amino acids

calcium taste and
taste modulation
gastrin, gastric
acid, bicarbonate,
and mucous secretion

77,81,84
86
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receptors will aid to elucidate whether glutamate
supports the release of gut hormones, besides the
activation of vagal afferents.

CONCLUSION

Glutamate induces the umami taste in the oral
cavity and in the GI regulates gastric acid, pesino-
gen, mucous and bicarbonate secretion. mGluRs,
T1R1/T1R3 and CaSR are the receptors that seem
to regulate those responses by sensing free gluta-
mate in the lumen. Taste sensation and nutrient che-
mosensing share similar molecular systems such as
taste receptors, G proteins and intracellular signal-
ing cascades. Enteroendocrine cells are specialized
cells that have taste-like properties and release sig-
naling molecules upon activation, but they are not
the only cells that can ‘taste’ the chyme. Chief and
parietal cells of the stomach also express receptors
that can bind to free glutamate. At the end, gluta-
mate seems to potentiate protein digestion by stimu-
lating pepsinogen and gastric acid secretion while
protecting the mucosa with a thicker mucous gel
and bicarbonate release at the same time. Future
studies may clarify the molecular mechanisms of
all these effects and the cells that mediate them.
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