
INTRODUCTION

Osteoactivin is a rat homolog of the Gpnmb family,
which was originally reported to be highly expressed
in human melanoma cells (1). Recently, we found

that unloading conditions, such as denervation (sci-
atic neurectomy) and spaceflight, caused a remark-
able increase in the expression of osteoactivin in
skeletal muscle (2), and that osteoactivin upregu-
lated expression of matrix metalloprotease (MMP)-
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3 and MMP-9 in fibroblasts infiltrated into dener-
vated skeletal muscle in mice (3). On the basis of
these findings, we suggested that an osteoactivin-
mediated increase in MMPs in skeletal muscle might
be useful for regeneration of denervated skeletal
muscle, leading to compensation for the loss of mus-
cle volume or protection of muscle fibers against
injury after denervation. To address this issue, in the
present study we subjected osteoactivin-transgenic
mice to long-term denervation for 70 or 90 days and
examined its effect on regeneration or degeneration
in the denervated skeletal muscle.

MATERIALS AND METHODS

Generation of osteoactivin-transgenic mice

We established three strains of hemizygous os-
teoactivin-transgenic mice as described previously
(3). Briefly, the BamHI/PmeI fragment of pcDNA
3.1/V5-His-tagged rat osteoactivin was subcloned
into an expression vector containing the cytomega-
lovirus immediate early enhancer chicken β-globin
hybrid promoter (4). This V5-His-tagged rat os-
teoactivin cDNA construct was injected into fertil-
ized (C57BL/6xDBA/2) F1 (BDF1) eggs for the
production of transgenic mice (Japan SLC, Inc.,
Shizuoka, Japan). The transgenics expressing the
highest levels of osteoactivin were back-crossed
onto BDF1 mice. The mice were kept under spe-
cific pathogen-free conditions in a room maintained
at 23�2��on a 12-h light/dark cycle and were al-
lowed free access to food and water. Osteoactivin-
transgenic mice without denervation were fertile and
apparently normal.

All animal experiments in the present study were
approved by The Committee for the Care and Use
of Animals in The University of Tokushima Faculty
of Medicine and were performed by the Institutional
Animal Care and Oversight Committee according
to established guideline principles.

Denervation

Adult male osteoactivin-transgenic and BDF1 (wild-
type) mice (approximately 9 weeks old), weighing
18-22 g, were subjected to denervation at the same
time, as described previously (2). For the denerva-
tion procedure, the dorsal skin of the right thigh
was cut and the posterior muscles divided to re-
veal the sciatic nerve. A chronic denervation was ob-
tained by removing a 5-mm-long section of the sci-
atic nerve. Gastrocnemius muscles isolated on Day

10, 20, 70 and 90 after denervation were immedi-
ately frozen in chilled isopentane and liquid nitro-
gen and stored at -80��until analysis.

Histochemical analysis

Sections (5 μm) were fixed in ice-cold acetone
for 10 min. After being rinsed with phosphate buff-
ered saline (PBS) three times, the fixed sections
were incubated with a 1 : 200 dilution of monoclo-
nal anti-human vimentin antibody labeled with Cy3
(Sigma, St. Louis, MO) at 4�� for 18 hr. Sections
were also subjected to hematoxylin and eosin (HE),
or Van Gieson staining (5).

Semi-quantitative reverse transcription and polym-
erase chain reaction (RT-PCR)

To measure the mRNA level, semi-quantitative
RT-PCR was performed as described previously
(3). Following the synthesis of first strand cDNA
from mRNA, second-strand synthesis and amplifi-
cation of target genes were performed. In this case,
the PCR buffer contained two sets of primers to
amplify a target gene cDNA as well as the internal
standard glyceraldehyde-3-phosphate dehydroge-
nase (GAPDH) cDNA simultaneously. The sense
and antisense primers used in this study are shown
in Table 1. The PCR products were separated by
PAGE on an 8% gel and detected with a highly-
sensitive nucleic acid staining reagent (TaKaRa,
Tokyo, Japan). The intensities of staining of the
target bands, and those of internal standard gene
cDNAs, were estimated using an image analyzer
(FMBIO II, TaKaRa), and the intensity ratio of a
target gene cDNA to the internal standard gene
cDNA was calculated.

Statistical analysis

The experimental data are expressed as means�
SD for 4 each group of 4 replicates and were statis-
tically evaluated by one-way analysis of variance
(ANOVA) using the SPSS computer program (re-
lease 6.1 ; SPSS Japan, Tokyo). Individual differences
between groups were assessed using Duncan’s mul-
tiple range tests. Differences were considered sig-
nificant at P �0.05.

RESULTS

Histochemical changes in the gastrocnemius muscle
of osteoactivin-transgenic mice after denervation

HE staining showed that 20-day denervation de-
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creased the size of myofibers and caused the infiltra-
tion of mononucleated cells into the interstitial space
of myofibers similarly in wild-type or osteoactivin-
transgenic mice, compared with the respective con-
trols (before denervation) (Fig. 1A). Because these
cells stained positively with an anti-vimentin anti-
body (Fig. 1B), they were identified as fibroblast-
like cells as described previously (3). In wild-type
mice, long-term denervation for 70 or 90 days caused

regeneration and degeneration of myofibers, as in-
dicated by the large numbers of muscle fibers with
central nuclei, shown by arrows in Fig. 1A. Fur-
thermore, long-term denervation stimulated the in-
filtration of fibroblast-like cells into interstitial space
of myofibers of wild-type mice (Fig. 1A) and caused
collagen deposition in the intestinal space (Fig. 1C).
In contrast, in osteoactivin-transgenic mice, little
degeneration of myofibers was observed even after

Fig. 1. Histochemical changes in the
skeletal muscle of wild-type or osteoactivin-
transgenic mice subjected to denervation
(A) Wild-type (WT) or osteoactivin-trans-
genic (Tg) mice were subjected to den-
ervation for the indicated periods. Sec-
tions (5 μm) from the gastrocnemius mus-
cle of denervated mice were stained with
hematoxylin and eosin (HE). Arrows in-
dicate muscle fibers with central nuclei.
(B) Serial sections (5 μm) from the gas-
trocnemius muscle of 20-day denervated
wild-type mice were stained with hema-
toxylin and eosin (HE) and an antibody
against vimentin, a fibroblast-specific pro-
tein. (C) Sections (5 μm) from the gas-
trocnemius muscle of 90-day denervated
mice were subjected to Van Gieson stain-
ing to detect collagen deposition. Simi-
lar results were obtained in three sepa-
rate experiments. Scale = 100 μm.

Table 1. Primers for PCR

Target gene Sequence Length (bp)

MMP-3 S 5’-GGAAATCAGTTCTGGGCTATACGAGG-3’ 301

AS 5’-CCAACTGCGAAGATCCACTGAAGAAG-3’

MCP-1 S 5’-CCCAATGAGTAGGCTGGAGA-3’ 125

AS 5’-TCTGGACCCATTCCTTCTTG-3’

eEFlA-1 S 5’-AGTGAGCTCTTCCTGGGACA-3’ 292

AS 5’-TCGCCAGACTTCAGGAACTT-3’

Glypican-1 S 5’-GGGACACTGTGCAGTGAGAA-3’ 129

AS 5’-AGGGTTGTTGATCTGGTTGG-3’

Decorin-1 S 5’-TTTCTTGGAGCCAGCAGAAT-3’ 162

AS 5’-TGGGCTTTCTGTGTTTACCC-3’

GAPDH S 5’-ACCCAGAAGACTGTGGATGG-3’ 125

AS 5’-TTCAGCTCTGGGATGACCTT-3’

AS, antisense primer ; S, sense primer ; eEFlA-1, elongation factor 1 A-1.

(A) (B)

(C)
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such long-term denervation (Fig. 1A). More inter-
estingly, the infiltration of fibroblast-like cells and
collagen deposition remained at low levels up to
70 and 90 days after denervation in the gastrocne-
mius muscle of osteoactivin-transgenic mice (Fig.
1A & C).

Expression of MMP-3 and regeneration/degeneration-
associated genes in the skeletal muscle of osteoactivin-
transgenic mice after denervation

We previously reported that 16-day denervation
further enhanced expression of MMP-3 in the gas-
trocnemius muscle of osteoactivin-transgenic mice
(3). Consistent with this previous finding, long-
term denervation for more than 20 days stimulated
expression of MMP-3 in the muscle, compared with
wild-type mice (Fig. 2A and B). The amounts of
MMP-3 in the gastrocnemius muscle of osteoactivin-
transgenic mice were sustained at this high level even
after 70-day denervation, while those of wild-type
mice returned to the basal level (the pre-denervation
value).

Since infiltration of macrophages into skeletal mus-
cle is necessary to regenerate muscle fibers (6-8),
we examined expression of a macrophage specific
gene, monocyte chemoattractant protein-1 (MCP-1).
Denervation for 10 or 20 days stimulated expres-
sion of MCP-1 in the gastrocnemius muscle of wild-

type mice (Fig. 2A and C). This increased expres-
sion of MCP-1 was further enhanced in the skele-
tal muscle of osteoactivin-transgenic mice. However,
MCP-1 expression in wild-type and osteoactivin-
transgenic mice returned to the basal level by 70
days after denervation.

We also examined changes in expression of re-
generation/degeneration-associated genes in the
gastrocnemius muscle during long-term denerva-
tion. In the muscle of wild-type mice, denervation
suppressed expression of the heparan sulfate pro-
teoglycan glypican-1, a low affinity receptor for
fibroblast growth factor 2 (FGF2) (9, 10), in a
time-dependent manner, whereas the expression
of glypican-1 in osteoactivin-transgenic mice was
stimulated following denervation (Fig. 2A and D).
Furthermore, expression of decorin-1, an anti-fibrotic
agent (11, 12), in the gastrocnemius muscle was
remarkably stimulated in denervated osteoactivin-
transgenic mice, while denervation alone only tenta-
tively induced its expression in wild-type mice (Fig.
2A and E). In contrast, overexpression of osteoac-
tivin caused a significant reduction in denervation-
induced expression of elongation factor 1A-1 (eEF
1A-1), an indicator for the persistence of degener-
ated cells (13), in the gastrocnemius muscle (Fig.
2A and F).

Fig. 2. Expression of MMP-3 and
regeneration/degeneration-associated
genes in the skeletal muscle of os-
teoactivin-transgenic mice after den-
ervation
Wild-type (WT) or osteoactivin-trans-
genic (Tg) mice were subjected to
denervation for the indicated periods.
The amounts of MMP-3, MCP-1,
glypican-1, decorin-1, eEF1A-1 or
GAPDH in total RNA extracted from
the gastrocnemius muscles were quan-
tified using semi-quantitative RT-PCR,
as described in MATERIALS AND
METHODS. The intensity ratio of
the cDNA of interest to GAPDH in
each group was calculated and shown
as a value relative to that in 10-day-
denervated wild-type mice, which was
set as one. The values of osteoactivin-
transgenic and wild-type mice before
denervation were similar. Values shown
are means�SD (n = 4). *P � 0.05,
compared with the value of animals
without denervation, #P �0.05, com-
pared with the value of wild-type mice.

(A) (B)MMP-3 (C)MCP-1

(D)Glypican-1 (E)Decorin-1 (F)eEF1A-1
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DISCUSSION

A lot of investigations have shown that growth fac-
tors, including insulin-like growth factor-1 (IGF-1),
fibroblast growth factor-2 (FGF2), and nerve growth
factor (NGF), can improve muscle regeneration dur-
ing the preliminary phase of healing (14-17). How-
ever, none of the growth factors that have been
studied appear able to completely heal injured mus-
cle, because the development of fibrosis hinders
muscle regeneration and prevents full strength re-
covery in the injured skeletal muscle (18, 19). This
process begins 2 weeks after muscle injury and con-
tinues over time (20, 21). Therefore, preventing fi-
brosis after muscle injury is one of the most impor-
tant subjects affecting regeneration of myofibers.

We have previously reported that osteoactivin
upregulates expression of MMP-3 and MMP-9 in
fibroblasts infiltrated into denervated skeletal mus-
cle in mice (3). MMP-3 has been reported to regu-
late growth and development of tissues by selec-
tive degradation of IGF-1/IGF-1-binding protein com-
plexes (22). Secreted MMP-9 is also involved in
the migration and myotube formation of myoblas-
tic cells (23). Furthermore, targeted disruption of
the MMP-3 gene in mice caused a delay in wound
healing due to a failure in fibroblast contraction (24,
25). Synthetic MMP inhibitors tested in clinical
trials had reversible musculoskeletal toxicity as the
main side effect (26). On the basis of these find-
ings, an osteoactivin-mediated increase in MMPs
in skeletal muscle might be useful for protecting
injured muscle from fibrosis, leading to full regen-
eration after denervation.

HE staining in the present study showed for the
first time, to our knowledge, that overexpression of
osteoactivin clearly prevents denervation-mediated
fibrosis in skeletal muscle in vivo . This cytoprotec-
tive effect of osteoactivin is supported by the ex-
pression of regeneration/degeneration-associated
genes in the gastrocnemius muscle during long-
term denervation. Denervation significantly induces
expression of anti-fibrotic agents, such as glypican-
1 and decorin-1, in the gastrocnemius muscle of
osteoactivin-transgenic mice, compared with wild-
type mice. The overexpression of glypican-1 in tur-
key myogenic satellite cells increases their prolif-
eration and responsiveness to FGF2, leading to re-
generation of injured skeletal muscle (9, 10). In con-
trast, transforming growth factor-β(TGF-β), which
is highly expressed in injured skeletal muscle (27),
stimulates the deposition of collagens and over-

growth of the extracellular matrix, thereby leading
to the formation of fibrosis (28, 29). Since decorin-1
has a potent anti-TGF-β action (11, 12), it is likely
that its increased expression supports the reduc-
tion of fibrosis. In fact, the combined administra-
tion of decorin-1 and IGF-1 has been reported to
enhance muscle regeneration and reduce fibrosis
(30). At present, we cannot determine whether over-
expression of osteoactivin induces expression of
such anti-fibrotic agents directly or indirectly (by a
macrophage-mediated mechanism). Further inves-
tigations are necessary to evaluate this hypothesis.
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