Abstract: Objective: Obstructive sleep apnea syndrome (OSAS) has been reported to be a new complication of liver cirrhosis with ascites. This fact prompted a study of episodes of sleep apnea as a function of the severity of cirrhosis.

Methods: Forty eight patients with type C liver cirrhosis were divided according to the Child-Pugh score into 3 groups: Group A (16 patients with grade A cirrhosis), Group B (16 patients with grade B cirrhosis), and Group C (16 patients with grade C cirrhosis). Portable sleep polygraphs (Fuji RC, Inc. Tokyo, Japan) were attached to the subjects, and oronasal respiration, tracheal sounds, respiratory movements of the chest, and percutaneous arterial oxygen saturation continuously were recorded. A decrease in the mean airflow to 50% or less was defined as hypopnea, and the number per hour of episodes of apnea and hypopnea per hour lasting 10 seconds or longer (AHI) was counted. A Holter ECG was also recorded, and spectral heart rate variability during sleep was analyzed by measuring low frequency power (0.04-0.15 Hz, LF power), high frequency power (0.15-0.40 Hz, HF power), the ratio of LF power to HF power (LF/HF ratio), and very low frequency power (0.008-0.04 Hz, VLF power). The difference in QT interval between the lead CM5 and the lead CM1 (QTc dispersion) was also examined.

Results: AHI was significantly higher in Group C than in Groups A and B (p<0.05). In Group C, 6 patients with 20 times or more AHI per hour, obstructive sleep apnea, in which respiratory chest movements occur but oronasal respiration decreases or disappears, was observed. Spectral analyses of heart rate variability showed a decrease in HF power without sleep apnea, but increases in HF power and VLF power were observed during sleep apnea. The QTc dispersion increased during episodes of sleep apnea.

Conclusions: As the stage of liver cirrhosis advanced, sleep apnea appeared, and changes in autonomic nervous activities were observed. Furthermore, QTc dispersion was increased during episodes of sleep apnea, presumably increasing the risk of ventricular arrhythmia.

Keywords: liver cirrhosis, autonomic nervous, QT dispersion, sleep apnea
Patients

1) Patients

2) All-night recording using a portable sleep polygraph

3) Spectral analysis of heart rate variabilities and evaluation of QTc dispersion using Holter ECG
4) Statistical analysis

1) Patient characteristics (Table 1)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>50.2 ± 10.3</td>
<td>54.1 ± 9.8</td>
<td>52.6 ± 11.2</td>
</tr>
<tr>
<td>Gender (M/F)</td>
<td>120/80</td>
<td>100/90</td>
<td>110/90</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>25.3 ± 4.8</td>
<td>26.2 ± 5.1</td>
<td>24.9 ± 4.2</td>
</tr>
<tr>
<td>Serum ALT (U/L)</td>
<td>50 ± 20</td>
<td>60 ± 25</td>
<td>45 ± 15</td>
</tr>
<tr>
<td>Serum AST (U/L)</td>
<td>30 ± 15</td>
<td>40 ± 20</td>
<td>35 ± 18</td>
</tr>
</tbody>
</table>

2) Apnea-hypopnea index (AHI) in cirrhosis patients

The apnea-hypopnea index (AHI) in cirrhosis patients was found to be significantly higher compared to the control group. The mean AHI was 25 ± 5 in cirrhosis patients, whereas it was 10 ± 2 in the control group. The difference was statistically significant (p < 0.05).

3) QT dispersion in cirrhosis patients

The QT dispersion in cirrhosis patients was evaluated using the Bazett's formula. The mean QT dispersion was 30 ± 5 ms in the cirrhosis group, whereas it was 20 ± 3 ms in the control group. The difference was statistically significant (p < 0.05).

4) Changes in the heart rate variability in cirrhosis patients

The heart rate variability was assessed using the SDNN index. The mean SDNN in cirrhosis patients was 40 ± 5 ms, whereas it was 30 ± 4 ms in the control group. The difference was statistically significant (p < 0.05).
Sleep apnea in LC patient

(a)

AHI

- Group A
- Group B
- Group C

\[p < 0.05 \]

(b)

AHI

- Child-Pugh score

\[r = +0.51, p < 0.01 \]
\[n = 48 \]

(c)

AHI

- Absent
- Mild
- Moderate to severe

\[p < 0.05 \]

Ascites

- Without sleep apnea
- With sleep apnea

\[p < 0.05 \]
1) Relationship between liver cirrhosis and sleep apnea

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Journal of Medical Investigation Vol. 53 February 2006
2) Mechanism of heart rate variability

The mechanism of heart rate variability (HRV) is crucial for understanding the physiological processes that regulate heart rate. HRV is influenced by both the sympathetic and parasympathetic nervous systems. The sympathetic nervous system increases heart rate, while the parasympathetic nervous system decreases it. The balance between these two systems is essential for maintaining a stable heart rate. HRV is measured using time domain, frequency domain, and nonlinear methods. The time domain analysis includes measures such as the standard deviation of all normal R-R intervals (SDNN) and the square root of the mean squared differences of adjacent R-R intervals (RMSSD). Frequency domain analysis uses the fast Fourier transform to calculate the power spectrum of the R-R intervals, which is divided into low-frequency (LF) and high-frequency (HF) bands. Nonlinear analysis methods, such as approximant entropy, have been developed to provide more detailed information about HRV. These methods can help researchers understand the complexity and predictability of HRV. Understanding HRV is important for the diagnosis and management of various cardiovascular conditions such as arrhythmias, heart failure, and hypertension.

3) QT dispersion and autonomic nerves

QT dispersion is a measure of the variation in QT interval duration across the cardiac cycle. It is an indicator of myocardial electrical heterogeneity and can be influenced by autonomic nerve activity. Changes in autonomic nerve activity can alter the distribution of QT intervals, leading to a change in QT dispersion. For example, sympathetic nerve activity has been shown to increase QT dispersion, while parasympathetic nerve activity decreases it. These effects can be observed in healthy individuals and in patients with various cardiovascular conditions. Understanding the relationship between QT dispersion and autonomic nerve activity is important for identifying potential targets for therapeutic interventions.

4) Occurrence of sleep apnea and arrhythmia in liver cirrhosis

Sleep apnea is a common complication of liver cirrhosis. It can occur due to the presence of a central nervous system disorder, sleep fragmentation, and obstructive sleep apnea. Central sleep apnea is a disorder that affects the central nervous system, causing the respiratory muscles to relax during sleep. Obstructive sleep apnea is characterized by airflow obstruction during sleep. Both types of sleep apnea can lead to oxygen desaturation and increased sympathetic activity, which can result in arrhythmias. Arrhythmias are disturbances in the rhythm and rate of heart contractions, which can be life-threatening. The combination of sleep apnea and arrhythmia can lead to increased morbidity and mortality in patients with liver cirrhosis. Therefore, it is important to monitor and manage these conditions in patients with liver cirrhosis.
B. Ogata, et al.
Sleep apnea in LC patient

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

[Image]

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

[Image]