
ABNORMALRESTINGSTATEMETABOLISM
IN DYT1 CARRIERS

Patients with primary dystonia lack specific histo-
pathological changes (1-3). Similarly, many functional
imaging studies with dystonia patients have yielded
conflicting results (4). Nonetheless, we have used
a novel regional network analytical approach (5) to
identify a reproducible pattern of abnormal regional
glucose utilization in two independent cohorts of
clinically non-manifesting DYT1 carriers (6, 7). We
found that these subjects express a specific meta-
bolic topography characterized by increases in the
posterior putamen/globus pallidus, cerebellum, and
supplementary motor area (SMA) (7) (Figure 1A).
In an ancillary study, we demonstrated that this ab-

normal torsion dystonia-related pattern (TDRP) was
also present in clinically affected patients, persisting
even following the suppression of involuntary dys-
tonic movements by sleep induction (6, 8).Moreover,
TDRP expression is not specific for theDYT1 genotype.
We have recently demonstrated abnormal network
activity in bothmanifesting and non-manifesting carriers
of the DYT6 dystonia mutation (North American
Mennonites) (Figure 1B) (7) . In all likelihood, this
resting pattern represents ametabolic trait of dystonia.
The use of PET to quantify TDRP expression in
individual family members may be valuable for gene
identification in selected kindreds.

The identification of abnormal brain networks in
dystonia has several practical implications. As men-
tioned above, the resting TDRP metabolic network
can potentially be used as a marker in linkage
studies to identify potential gene carriers among
family members of dystonia patients. Additionally,
disease-related networks can prove useful for assessing
mechanisms of therapeutic interventions, as has
been demonstrated in Parkinson’ s disease (9, 10).
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ABNORMALRESTINGSTATEMETABOLISM
IN DOPA-RESPONSIVE DYSTONIA (DRD)

Dopa-responsive dystonia (DRD) is typically an
autosomal dominant postural dystonia associated
with mutations in the GTP cyclohydrolase 1 (GCH1)

gene (11-13). The onset of DRD is often early and
characterized by diurnal fluctuation of symptoms ;
parkinsonian symptoms may appear later in the
clinical course. A defining feature of DRD is amarked
and sustained response to low doses of levodopa,
suggesting that the lesion may be functional rather
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Figure 1.
A. Regional metabolic covariance pattern identified with FDG/PET and network analysis in non-manifesting DYT1 gene carriers and
control subjects (see text). This torsion dystonia-related pattern (TDRP) was characterized by bilateral covarying metabolic increases
in the putamen, extending into the globus pallidus (GP), the supplementary motor area (SMA), and the cerebellar hemisphere. Subject
scores for this pattern discriminated the DYT1 carriers from controls (p<0.002). [The display represents voxels that contribute
significantly to the network at p = 0.001. Voxels with positive region weights (metabolic increases) are color-coded red].
B. Scatter diagram of TDRP subject scores computed prospectively in six new non-affected DYT1 gene carriers, six DYT6 gene carriers,
seven dopa-responsive dystonia (DRD) patients, and 13 control subjects. Subject scores were abnormally elevated in DYT1 (p<0.001)
and DYT6 carriers (p<0.007), but not in DRD patients (p = 0.4). [The error bars indicate subgroup standard errors of the mean. Circles
represent normal controls;squares represent subjects with genotypes associated with primary torsion dystonia;triangles represent
DRD patients. Open symbols represent clinically non-manifesting subjects ; filled symbols represent affected dystonia patients].
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than anatomical. Indeed at postmortem, there is
little morphologic change in nigra and striatum
(14, 15), and positron emission tomography (PET)
studies have revealed minimal abnormalities in pre-
and postsynaptic functioning neurons (16, 17).

The TDRP network is not expressed in DRD
patients (7) (Figure 1B). Given the well-described
features of DRD, it is likely that a different metabolic
network abnormality characterizes this specific form
of dystonia. Using network analysis of FDG PET
images, we found that DRD is associated with a
distinct metabolic topography that is characterized
by relative increases in the dorsalmidbrain, cerebellar
vermis, and SMA, associated with covarying decre-
ments in the putamen, and in lateral premotor and
motor cortical regions (Figure 2A)(18) . This DRD-
related pattern (DRD-RP) is not expressed in mani-
festing and non-manifesting dystonia gene carriers
harboring the DYT1 or DTY6 gene mutation (Figure
2 B)(18). These findings support the hypothesis
that the pathophysiology of DRD differs from that

of other forms of dystonia. We also found that
Parkinson’s disease-related pattern (PDRP) expression
is not elevated in DRD, despite the presence of
parkinsonian features in this disorder, and the
dramatic response to dopaminergic therapy. This
pattern is also not present in PTD where the
relationship to dopaminergic dysfunction is less
obvious (19, 20).

The DRD-RP topography is characterized by cortical
changes reflecting metabolic features of both PD
and torsion dystonia. The presence of relativemetabolic
decrements in the lateral premotor region in the
DRD-RP is a consistent feature of the PD topography
(21-23). By contrast, the DRD-RP includes metabolic
increases in SMA as described previously in PTD
(5-7). The presence of increases and decreases in
motor cortical association regions raises the possibility
that changes in the functioning of the direct and
indirect pathways coexist in DRD.

Figure 2.
A. Regional metabolic pattern associated with dopa-responsive dystonia (DRD)
The DRD-related pattern (DRD-RP) was characterized by reduced metabolism in the left putamen (PUT ; left) and in the motor
and premotor cortical (PMC) regions (right). The pattern also included metabolic increases in the supplementary motor area (SMA)
and in the cerebellar vermis (bottom). The display represents voxels that contributed significantly to the network at p<0.005 (seeTable 1),
and that were demonstrated to be reliable with bootstrap estimation procedures (see text). [Voxelswith positive regionweights (metabolic
increases) are color coded from red to yellow ; those with negative region weights (metabolic decreases) are color coded blue.]
B. DRD pattern expression in individual subjects
Left : Network expression (subject scores) in DRD patients (filled triangles) and healthy volunteers (open circles) used to identify
the disease-related pattern described in Figure 1A (see text). DRD-RP scores were significantly elevated (p<0.005) in the disease
group relative to controls. [Open columns represent the normal control group and shaded columns represent the DRD cohort.]
Right : DRD-RP expression quantified prospectively in DYT1 and DYT6 dystonia mutation carriers. DRD-RP scores in these groups
did not differ significantly from control values (p>0.1), but were lower than for the DRD cohort (p<0.01, and 0.05 for the DYT1 and
the DYT6 groups, respectively). [Open columns represent non-manifesting (NM) gene carriers ; shaded columns represent
clinically manifesting (MAN) dystonia patients.] Error bars indicate standard error of the mean for each cohort.
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ABNORMAL BRAIN-BEHAVIORRELATION-
SHIPS IN DYT1 CARRIERS

We explored the possibility that subtle behavioral
changes may exist as a metabolic correlate of TDRP
activity in gene positive individuals. The basal ganglia
have been shown to mediate specific aspects of
motor learning. We therefore selected motor sequence
learning as a behavioral paradigm to study brain-
performance relationships in DYT1 carriers (24).
We studied 12 non-manifesting DYT1 carriers and
12 healthy age-matched controls and measured
psychophysical performance indices during the
execution of simple movements in both timed-
response and reaction time paradigms, as well as
during a sequence learning task (25-27). To assess
brain activation responses during task performance,
we concurrently scanned seven members of each
group with 15O-water (H2

15O) and PET.
DYT1 carriers performed the motor execution

tasks in both the timed-response and reaction time
mode without significant differences from controls.
Specifically, movement initiation and movement time
during motor execution was normal inDYT1 carriers,
as were mean reaction times and floor reaction times.
Thus, in contrast to clinically affected dystonia patients
(28), motor preparation did not appear to be impaired
in non-manifesting DYT 1 carriers. In contrast to
the execution of simple movements, a significant
defect in motor sequence learning was present in
DYT1 carriers.

PET recordings during task performance demon-
strated significant group differences in regional
brain activation responses. Non-manifesting DYT 1
carriers displayed comparative increases in SMA
activation during motor execution, despite normal
movement characteristics. By contrast, motor activation
responses were reduced in the posterior-medial
cerebellum of non-manifestingDYT1 carriers, perhaps
as a consequence of deposition of mutant torsin A
protein in this region (29, 30). Given the comparatively
normal motor performance of these subjects, it is
possible that the changes in local activation responses
represent an effective means of compensating for
impaired resting metabolic dysfunction within key
nodes of the major motor pathways.

While neural resources within the motor CSPTC
loops may compensate for baseline metabolic dys-
function in DYT1 carriers performing simple move-
ments, this may not be the case for sequences of
movements. During sequence learning, DYT1 carriers
showed significantly greater activation than controls

in the right pre-SMA and posterior parietal cortex,
as well as in the right anterior cerebellum and left
prefrontal cortex. Nonetheless, this overactivation
did not result in normal learning performance. These
PET findings are limited tomean differences between
the two groups and do not relate these changes to
the behavioral abnormalities that were detected in
the DYT1 carriers.

To examine the nature of these brain-behavior
relationships, we first determined whether a previously
validated learning network in normal subjects accurately
predicted performance in DYT1 carriers. In earlier
sequence learning studies (26), we found that a
specific covariance pattern, characterized mainly
by caudate, prefrontal, and posterior parietal activation,
accurately correlated with the learning achieved
during imaging in both healthy volunteers and in
patients with Parkinson’s disease.While reproducible
in these populations (27), this learning network
failed to predict performance in the DYT1 carrier
group. To determine whether a different network
mediated sequence learning in these subjects, we
performed an exploratory analysis restricted only
to the DYT1 carriers (31) and detected a novel
pattern that correlated with learning in this cohort
(Figure 3). Indeed, this candidate topography in-
corporated several regions not used by control subjects,
such as the cerebellar cortex and dentate nucleus,
as well as the ventral prefrontal cortex. Interestingly,
the caudate nucleus contributed significantly to the
learning network in normals (26, 27), but not to that
identified in DYT1 carriers.

It is also suggested from network analyses that
sequence learning in DYT1 carriers is not mediated
by the activation network utilized by normal cohorts,
but by a novel learning network that incorporates
several regions not used by control subjects such
as cerebellar cortex and dentate nucleus. Indeed,
a shift from striatal to cerebellar processing may
be a feature of the DYT1 carrier state. The status
of network-performance relationships in clinically
affected DYT1 patients and potential changes in
these relationships with treatment (32) is a topic
of ongoing investigation.

DIFFUSION TENSOR IMAGING (DTI)

Magnetic resonance diffusion tensor imaging (DTI)
is a new technique that can be used to visualize
and measure the anisotropic water diffusion in
neural fibers such as nerve, white matter in spinal
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cord, or white matter to track fiber pathways (33).
To test the hypothesis that themicrostructural

integrity of motor control pathway is locally disturbed
in DYT1 carriers, we used DTI to assess the micro-
structure of white matter pathways in 12 mutation
carriers and 17 age-matched control subjects. Fractional
anisotropy (FA), a measure of axonal integrity and
coherence, was reduced (p<0.005) in the subgyral
white matter of the sensorimotor cortex of DYT1
carriers (34). Abnormal anatomical connectivity of
the supplementary motor area may contribute to
the susceptibility of DYT1 carriers to develop clinical
manifestations of dystonia.

DOPAMINE RECEPTOR STUDIES

The neurochemical basis for primary dystonia is

currently unknown. However, abnormal dopaminergic
neurotransmission has been suggested to play a
role in certain forms of this disorder (20, 35). A
moderate reduction of dopamine content in the
rostral putamen and caudate has been reported in
a DYT1 patient studied at postmortem (36). Additionally,
postmortem measurements in three DYT1 dystonia
brains have revealed a significant increase of the
3, 4-dihydroxyphenylacetic acid (dopaminemetabolite)/
dopamine ratio in the striatum with a trend toward
reduced D1 and D2 receptor binding (37). Several
studies have reported decreased D2 receptor binding
in the striatum in idiopathic focal dystonia using PET
or SPECT radioligands (38, 39). To determine whether
this abnormality is a feature of the dystonia genotype,
we used [11C] raclopride and PET to compare D2

receptor binding in non-manifesting DYT1 gene

A

B

Figure 3.
Voxel-based network analysis of H2

15O/PET data from seven non-manifesting DYT1 carriers scanned during motor sequence
learning : retrieval pattern.
A. This network topography was characterized by covarying learning-related activations (arrows) in the cerebellum and dentate
nucleus (left), and in the inferior dorsolateral prefrontal cortex (DLPFC) (right). [Positive region weights (red-yellow) were
thresholded at Z = +2 to display clusters contributing significantly (p<0.01) to the network (see text)].
B. Subject scores for this topography, representing network activity in individual gene carriers, correlated with the learning that
was achieved concurrently during the scanning epoch (R2 = 0.72, p<0.001).
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carriers with control subjects (Figure 4). We found
that raclopride binding in caudate and putamen was
reduced ( 14%, p<0.005) in the gene carrier group
(19). These reductions are somewhat lower than the
29% mean reduction in D2 receptor binding measured
in focal dystonia (38).

Although raclopride PET is useful in assessing
the integrity of D2-bearing striatal projection neurons
(40), it has relatively lower receptor binding affinity
than other D2 binding ligands (38, 39). While our
results in non-manifesting DYT1 carriers are similar
to those from affected scanned with less displaceable
tracers, we cannot exclude the possibility that the
RAC PET findings stemmed at least in part from
an increase in dopamine turnover (37). It is conceivable
that both factors are involved to varying degrees,
resulting in overactivation of both the D1-mediated
direct and D2-mediated indirect pathways (5). Additional
studies with more specific radioligands, including
those for D1 receptors and correlation with patho-
physiological data will further shed light in the role
of dopaminergic transmission in DYT1 and other
forms of primary torsion dystonia.
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