Abstract: A 75-year-old man was referred to our hospital because of the emphysema and tumor of the right intermediate bronchus. Thoracic CT scan and bronchoscopic examination demonstrated a spherical tumor of the right intermediate bronchus covering a normal mucosa. The biopsy specimen obtained from this tumor was histologically diagnosed as glandular type of adenocarcinoma in the bronchus. Surgical treatment was not feasible because of poor pulmonary function. Therefore, the patient underwent Photodynamic therapy (PDT) using porfimer sodium (Photofrin) and an excimer dye laser. After 4 months, the tumor disappeared and there has been no recurrence for 3 years 3 months. PDT can affect a submucosal tumor of the central airway, and is safe for patients with poor pulmonary function. Our report recommends that PDT should be applied not only to early lung cancer but also submucosal tumor of the central bronchus. J. Med. Invest. 52:208-211, August, 2005

Keywords: photodynamic therapy, lung cancer, submucosal tumor, central airway
K. Kondo, et al. PDT for submucosal lung cancer
The Journal of Medical Investigation Vol. 52 August 2005

et al. have recently demonstrated that the expression of a specific protein in skin cells is altered by UV exposure. This finding is consistent with previous reports showing that UV radiation can modulate the expression of genes involved in skin cell differentiation and proliferation. The authors propose a model in which UV radiation activates transcription factors that upregulate the expression of the target protein, leading to changes in skin cell function.

Further experiments are required to validate the proposed model and to determine the molecular mechanisms underlying the UV-induced changes in gene expression. Nevertheless, these results highlight the potential therapeutic implications of modulating specific proteins in skin cells. Future studies should focus on developing strategies to selectively inhibit or activate the expression of these proteins, with the ultimate goal of improving skin health and preventing skin-related diseases.

In conclusion, the study by et al. provides new insights into the molecular basis of UV-induced skin cell responses. The findings contribute to our understanding of skin biology and may have significant implications for the development of novel therapeutic approaches for skin disorders.