
INTRODUCTION

The adhesion between cells and the extracellular
matrix (ECM) surrounding cells is essential to develop
tissue and maintain its function ; it is also necessary
to repair tissue and regenerate its function after being
damaged (1). ECM is a super-highmolecular complex
comprised of cell adhesive glycoproteins such as col-
lagen (COL), fibronectin (FN), laminin (LM), and
proteoglycan (2). Cell adhesion to ECM are mainly
mediated by the β1 integrin family (β1 integrins)
expressed on cell surfaces. β1 integrins-induced sig-

nal at cell adhesion controls a wide variety of cell phe-
notypes, including cell proliferation, migration, dif-
ferentiation, cell survival, ECM synthesis, degradation,
and construction of ECM molecules (3, 4).

The glomerulus possesses a unique architecture
that allows it to carry out its function of purifying the
blood through filtration. This structure is established
and maintained through the interactions of glomerular
cells with ECM consisting of the glomerular basement
membrane (GBM) and mesangial matrix. Glomerular
cells interact with ECM through β1 integrins that
mediate attachment to the ECM. Recent evidences
have demonstrated that β1 integrins functions as a
two-way street between the cell and the ECM. The
ECM controls the cell proliferative, synthetic, and
metabolic states, and responsiveness to the extra-
cellular factors while events in the cell can affect β1
integrins-mediated ECM formation.
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Progressive form of glomerulonephritis (GN) is
characterized with mesangial cell (MC) proliferation,
accumulation of mesangial ECM and podocyte de-
tachment from the GBM. Therefore, the molecular
pathology of progressive GN can be studied with re-
gard to the cell phenotypes controlled by β1 integrins
that are expressed by glomerular cells. Specifically,
unregulated ECM reorganization and remodeling by
mesangial cell (MC)-β1 integrins may alter the mor-
phology and function of the glomerular mesangium ;
and there is the possibility that a vicious cyclemay form
in which these alterations may further modify MC
function to induce even more pathological mesangial
remodeling that finally leads to podocyte detachment
and collapse of glomerular capillary ultrafiltration ap-
paratus (5, 6). Currently, it is thought that excessive
expression of fibrogenic mediators, including PDGF-
BB, TGF-β, angiotensinⅡand endothelin are involved
in the progression of chronic GN (7-9) ; and it is found
that these mediators influence the expression ofMC-β1
integrins and control its function (10, 11). In this brief
review, we report comments on the role of β1 integrins
that is responsible for glomerular cells-ECM adhesion.
Moreover, we reviews recent investigations focussing
on the expression of β1 integrins in MCs, its control
by soluble mediators, and the role of β1 integrins in
the progression of glomerular diseases.

Function and structure of β1 integrins

Integrins are non-covalently-bound heterodimeric
cell adhesion molecules that link the ECM to the
cytoskeleton. β1 integrin family (β1 integrins), the
largest group of integrin family, is composed of a β1
and 1 of 12 α subunits (α1-α11 and αv) and function
predominantly cell-ECM adhesion. Both subunits have
a single hydrophobic transmembrane domain, cyto-
plasmic tails and extracellular domains. It transmit
information from ECM context surrouding cell into
cell (outside-in signaling), while the extracellular bind-
ing activity of integrins is regulated from the inside of
the cells (inside-out signaling). Although inside-out
signaling is the chief mechanismbywhich cells control
integrin function, it has not been investigated in detail

on nephrology field. Therefore, the present review
concentrates on outside-in signaling, which has pro-
found effects on many glomerular cell functions.

The combination of the α-and β1-subunits not only
determines the specificity of ligandECMcompoments
but also intracellular signaling properties affecting the
cell phenotypes such as proliferation, differentiation,
survival and ECM assembly (3, 12). As the cytoplasmic
tails of integrins are very short and devoid of enzy-
matic activity, they transduce signals by associating
with adaptor proteins (talin, paxillin, vinculin) that
connect the integrin to the cytoskeleton and cyto-
plasmic kinases (Focal adhesion kinase (FAK), Src-
kinase family, Phosphatidylinositol-3 kinase (PI-3K)).
In vitro , as integrins bind to ECM compoments, they
become clustered in the plane of the cell membrane
and associate with a cytoskeletal and signaling complex
that promotes the assembly of actin filaments. The
organization of actin filaments into larger stress fibers,
in turn, causesmore integrin clustering, thus enhancing
the bindng of ECM compoments and organization
by integrins. As a result, ECM proteins, integrins,
and cytoskeletal proteins assemble into large multi-
protein aggregates, termed focal adhesion and ECM
contacts(3). Importantly, integrins may transduce
signals through their association with and clustering
of growth factor receptors (4, 13). Integrin and growth
factor signalings do not function independently, but
extensive crosstalk takes place between integrin sig-
naling and a large variety of growth factor signaling
pathways (14).

Role of β1 integrins in glomerular injury

Many histochemical and cell biological studies on
rat and human glomeruli and cultured glomerular
cells have demonstrated that glomerular cell types
express multiple integrins (6, 15). The β1 integrins
expressed on glomerular cells in vivo and in vitro and
ECM components recognized by β1 integrins are
summarized in Table 1. The expression of β1 integrins
has been investigated in several experimental models
of rat and human GN, and the results have suggested
that they play roles in glomerular diseases. Moreover,

Table 1. β1 integrins expressed on glomerular cell types.

Ligand-matrix component

Laminin Fibronectin Collagen

Glomerulus

Endothelial cell α1β1, α3β1 α5β1, αvβ1 α1β1, α2β1, α3β1

Mesangial cell α1β1, α3β1 α5β1, α8β1 α1β1, α2β1, α3β1

Podocyte α3β1 α3β1 α3β1
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ablation of glomerular integrin function through the
use of either function-blocking integrin antibody or
an integrin gene knock-out strategy has shown that
integrin expression by glomerular cells plays important
roles in glomerular injury.

In a rat model of anti-Thy 1 antibody-induced GN in
which TGF-β promotes mesangial ECMaccumulation,
coordinated increases in α1β1, α5β1 and α8β1 in-
tegrins and their ligands (i.e., FN, COLⅠ,Ⅳ, and LM)
have been reported (16, 17). Semiquantitative immuno-
histochemical analysis in this model of GN showed
that the level of glomerular TGF-βexpression paralleled
the level of the glomerular expression of β1 integrins
(α1β1, α5β1 integrins) and their ECM ligands, sug-
gesting that TGF-β may contribute to pathological
mesangial ECM accumulation by enhancing α1β1,
α5β1 integrin-mediated ECMassembly (16). In another
model of GN, IRC-derived GN mice, which showed
a marked accumulation of mesangial ECM compo-
nents (FN, COLⅠ,Ⅳ, and LM) and increased TGF-β
expression in diseased glomeruli, the increased ex-
pression of α1, α2, α5 and β1-subunits was noted
(18). Additionally, our immunohistological study of
human GN found significant increases in glomerular
β1 integrins (α1β1, α5β1 integrins) in IgA neph-

ropathy and lupusGN that paralleled both the severity
of glomerular lesions such as ECM deposition and
cellularity, and the glomerular synthesis of TGF-β (19).
Positive correlations have been reported between the
mesangial expression of α1β1, α5β1 integrins and
mesangial expansion in patients with IgA nephropathy,
Henoch-Schoenlein nephritis, and diabetic nephro-
pathy (20-23).

Recently, we examined the effect of the administra-
tion of function-blocking mouse anti-α1 integrin anti-
body (anti-α1 Ab) in rats with anti-Thy-1 GN.We found
that the in vivo application of anti-α1 Ab reduces MC-
mediated pathological mesangial matrix remodeling,
suggesting that α1β1 integrin is involved in the de-
velopment of experimental GN characterized byMC
proliferation and ECM accumulation (Fig. 1)(24). In
an experiment similar to ours, Cook et al. reported that
treatment with mouse anti-α1 Ab reduced glomeru-
lar and tubulointerstitial scarring in a ratmodel of cres-
centic GN (25). Another approach examining the role
of α1β1 integrin in renal disease has been reported
in double-knockout mouse at both the collagen α3
(IV) gene (Alport mouse) and the α1 integrin gene
(26). The extensive expansion of the mesangial ma-
trix observed in Alport mice was attenuated in age-

Figure. 1. Effect of mouse anti-α1 integrin monoclonal antibody (anti-α1 Ab) on rats with anti-Thy-1 GN. Rats injected with
either mouse IgG1 or anti-α1 Ab in the left renal artery 3 days after induction of anti-Thy-1 GN. Micrographs show
representative results of PAS staining of glomeruli from normal rat (normal) and day 7 anti-Thy-1 GN rats treated with either
mouse IgG1 (＋control IgG1) or anti-α1 Ab (＋anti-α1 Ab) (Magnification ×200).
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matched double-knockoutmice. This close relationship
between MC-α1β1 integrin expression and mesangial
ECM expansion strongly supports the notion that α1β1
integrin plays a direct role in pathological mesangial
remodeling (scar remodeling) inGN. Recently, Hartner
et al . showed using α8-deficient mice treated with
desoxy-corticosterone (DOCA)-salt which induced
glomerular hypertension as well as mechanical stress
of the glomerular mesangium that the expression of
MC-α8 integrin helps to maintain the integrity of the
glomerular capillary tuft (27). However, it has also
been shown that MC-α8 integrin is not likely to be
involved in the development of glomerulosclerosis
in this mouse model of glomerular injury.

The normal glomerular capillary wall barrier to fil-
tration of macromolecules is maintained by integrin-
mediated glomerular podocyte-GBM interactions.
This is demonstrated by the distribution of integrins
along the surface of cells abutting theGBMand study
of animalmodels of proteinuric glomerular injury. Dam-
age on normal podocyte-GBM adhesion function in-
duce abnormal proteinuria. Podocyte detachement and
retraction from the GBM are important morphologic
correlates of the onset of proteinuria in several non-
antibody-mediated models of proteinuria, including
puromycin-induced nephrosis, protein overload pro-
teinuria, and subtotal nephrectomy (28, 29) and the
areas of denudedGBMare probably critical sites of pro-
tein leakage into the urine (28, 30). Proteinuriamay be
preceded by podocyte cytoskeletal disaggregation and
loss of actin and vinculin from tertiary podocytic proc-
esses (31), suggestive of disruption of focal adhesions.
Two antibody-mediated models of proteinuria may be
mediated by interference with normal podocyte ad-
hesion. In these models, antibody injection produces
transient proteinuria without evidence of involvement
of mediator systems such as complement or leukocytes.
In the first, non-complement-fixing anti-GBMantibod-
ies produce proteinuria, which has been theorized to
be due to antibody-induced changes inGBM structure
or contamination with antibodies reactive with podo-
cyte antigens (32). In the second, the F(ab)2 and F
(ab)’ fragments of anti-Fx1 A antibodies cause a tran-
sient complement and leukocyte independent lesion
following binding to podocyte (33). Both anti-Fx1 A
antibody and an anti-GBM antibody, which causes
complement independent proteinuria, havebeen shown
to have prominent reactivity with β1 integrins and to
be capable of inhibiting podocyte attachment to sub-
strate in vitro (34, 35). Thus, binding of antibodies to
integrins on podocyte might lead to proteinuria by
direct interference with podocyte-GBM interactions.

Direct evidence of increased glomerular permeability
to macromolecules by cross-linking of β1 integrins
has been obtained using anti-β1 antibodies and isolated
glomeruli in an in vitro system (36).

Focally decreased staining for α3β1 integrin on the
glomerular capillary wall has been reported in mem-
branous nephropathy, indicating the presumed impor-
tance of α3β1 in podocyte adhesion to the GBM (37,
38).

Role of β1 integrins in MC-induced ECM assembly

There is accumulating evidence that critical step of
ECM assembly is not passively ocurred (self-assemble)
but rather is actively mediated by β1-integrins (39-
43). Integrins adhere to soluble secreted ECM com-
ponents at the cell surface, and are constructing in-
soluble ECM networks.

A cell adhesion assay showed that human and rat
MCs utilize β1 integrins to adhere to FN, COLⅠ,Ⅳ
and LM. MCs primarily use the abundantly expressed
α1β1 integrin to bind to COLⅠ,Ⅳand LM while
α2β1 integrin expressed on MC, another COL and
LM receptor, plays a minor role in cell binding to COL
Ⅰand Ⅳ(44, 45). The α5β1 and α8β1 integrins me-
diate MC adhesion to FN. Cultured MCs (α8-/-) ob-
tained from α8 knock-out mice showed a marked in-
hibition of cell adhesion to FN, suggesting that α8β1
integrin is amajor FN receptor (45, 46). Culture studies
of MCs demonstrated that β1 integrins can be organ-
ized in focal adhesions that mediate attachment and
spreading on ECM molecules, and transduce signal
from ECM. On COL I, MCs organized α1β1, α2β1
and α3β1 integrins, on LM, MCs organized α1β1 and
α3β1, on FN, MCs organized α3β1, α5β1 and α8β1
(17, 47).

Regarding β1 integrins-mediated ECM assembly,
it has been confirmed using FN assembly assay that
FN secreted from cells is assembled into insoluble
matrix outside of cells via the function of α5β1 in-
tegrin expressed on the cell surface (40, 41). On the
other hand, the collagen gel contraction assay, a three-
dimensional cell culture method, is useful for inves-
tigating the function of collagen-binding integrins in
collagen matrix assembly (reorganization) and scar
remodeling seen in damaged organs, including the skin,
lung, liver and kidney (48-51). This culture system is
composed of several phases including cell adhesion
to collagen fibers and cell migration, followed by as-
sembly of the surrounding collagen fibers into more
dense collagen fibrils within the collagen lattice (10, 11).
Thus, the process of gel contraction seems to be similar
to mesangial collagen matrix remodeling or sclerosis

S. Kagami et al. β 1 integrins and glomerulosclerosis４



in GN, since abnormalmesangial assembly of COLⅠ,
Ⅲ and Ⅳ, dense collagenous matrix deposition, and
disfiguring scarring of mesangium are characteristic
features ofmesangial sclerosis inprogressive glomeru-
lar diseases (50). Using this assay, we demonstrated that
MC-α1β1 integrin is essential for collagen-dependent
adhesion/migration and is thereby involved in colla-
gen matrix reorganization (11).

TGF-β and PDGF-BB have been recognized to be
key mediators in the development of glomerular scar-
ring in experimental and human kidney diseases (7, 8).
Both factors stimulated FN assembly through the
increased cell-surface expression of α 5β1 integrin
(52-54). Recently, connective tissue growth factor
(CTGF), a downstream mediator of TGF-β, has been
shown to play a role in TGF-β-induced FN fibril for-
mation by upregulating active α5β1 integrin in human
MCs(55). Both growth factors also enhanced MC-
α1β1 integrin-dependent collagenmatrix reorganization
(11). The ability of TGF-β to stimulate collagen matrix
reorganization is dependent on increased α1β1 integrin
expression, which leads to an increased number of
sites for MCs to adhere to collagen I, whereas PDGF-
BB enhancement has been shown to depend on in-
creased α1β1 integrin-mediated MC migratory ac-
tivity. Indeed, we found that the overexpression of
α1β1 integrin is associated with the enhanced ability
of MC to perform collagen matrix remodeling (50).
Furthermore, considering that CTGF has been shown
to enhance α1β1 integrin-dependent human MC ad-
hesion and migration, CTGFmay induce α1β1 integrin-
mediated collagen matrix reorganization byMCs (56).
AngiotensinⅡ(AngⅡ) and endothelin-1 (ET) are po-
tent vasoconstricting peptides that have been impli-
cated in fibrosis in various organs, including kidney
(9, 57). AngⅡstimulates cardiac fibroblasts-induced
collagen matrix remodeling by enhancing β1 integrin
expression (10). We reported that ET promotes colla-
gen matrix reorganization by enhancing MC-α1β1
integrin-dependent migration and MMP-2 activity
(58). Interestingly, recent reports have demonstrated
that the process of collagen fibril formation is greatly
influenced by cell-derived FN polymerization via cell-
surface α5β1 integrin, suggesting that in vivo collagen
matrix deposition is dynamically integrated with FN
assembly (42, 43). Taken together, enhancedMC-β1
integrins-mediated ECM organization induced by
many soluble nephritogenic factors may contribute
to the abnormal mesangial remodeling observed in
progressive GN.

β1 integrins-mediated signaling pathways regulate
cell proliferation, survival and ECM remodeling by
MCs

Recent cell biological studies have revealed that β1
integrins, together with receptors for solublemediator
molecules, play a crucial role in regulating cell prolif-
eration (4, 59). In general, the cell cycle is controlled
by cyclin-dependent kinases (CDKs). These proteins
are expressed constitutively, but their activity is en-
hanced by binding to cyclins and inhibited by the action
of CDK inhibitors (CKIs)(60). CKIs, including p21
Waf-1, p27 Kip1, and members of the INK4 family of
CDK inhibitors, negatively regulate the cell cycle by
inhibiting the formation or activation of cyclin-CDK
complexes (61). Progression through the G1 phase
is controlled by CDK4 andCDK6, which interact with
cyclin D1, and by CDK2, which binds to cyclin E. The
CKIs p21 cip1 and p27 kip1 inactivate CDK2. CDKs
are responsible for the phosphorylation of Rb, which
induces other cell cycle proteins including cyclin A.
The association of cyclin A with CDK2 then initiates
the G1/S transition. Integrin-mediated cell adhesion
regulates the G1 phase of the cell cycle (4). Integrins
cooperate with receptor tyrosine kinases to stimulate
cyclin D1 expression and suppress CKI levels, and
thereby support the cyclin E-CDK2 activity that drives
the transition to S-phase (62). The enhanced and sus-
tained extracellular signal regulated kinase (ERK) ac-
tivity in adherent cells explains in part the supportive
role of integrins in cyclinD1 transcription (63, 64).Many
pathways that connect integrins to ERK activation
have been implicated in cell proliferation, such as the
assembly of protein complexes including Src, FAK,
and p130 Cas (65) or including Fyn, caveolin, and Shc
(Wary et al.,1998). Additionally, RhoA and Rac activity
have been implicated in integrin-mediated control of
the levels of cyclin D1 and CKI (67, 68).

There have been a few reports regarding cell cycle
regulation of MC from the perspective of cell-ECM
interaction. To analyze the possible involvement of
collagen-binding integrins in COL I-derived growth
signals, Schocklmann et al recently examined how two
structurally distinct forms of COL I,monomer versus
polymerized fibrils, affected the proliferation and ex-
pression of G1-phase regulators in MCs, using a two-
dimensional cell culture (69). The adhesion of MCs
to monomer or polymerized collagenwas equally well.
However, in contrast to a control substratum of plastic
or monomer COL I, polymerized COL I completely
prevented the serum-induced increase in DNA syn-
thesis and MC replication. The inhibitory effect of po-
lymerized COL Iwas characterized by the rapiddown-
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regulation of cyclins D1 and E and the lack of serum-
mediated suppression of CKI p27Kip1. They speculated
that polymerizedCOL I fibrils specifically regulate early
α1β1 or α2β1 integrin signaling, which leads to the
inhibition ofMC proliferation. Of note, overexpression
of α1β1 integrin in cultured MCs showed decreased
cell mitogenicity and increased expression of the CKI
p27Kip1, suggesting that α1β1 integrin expression
itself play a role in the regulation of MC growth (50).

Abnormal mesangial ECM remodeling by MCs is
a prominent cell biological feature of progressive GN.
It is characterized by an increased incorporation of
normal mesangial ECM components such as FN, LM
and COL Ⅳ and/or pathological ECMcomponents of
COL Ⅰand Ⅲ into nephritic glomeruli (6, 16). There-
fore, identification of the integrin signalingmolecules
that are involved in abnormal MC-induced ECM re-
modeling may provide uswith a selective target for the
pharmacological inhibition of pathological mesangial
remodeling. To investigate the mechanism of MC-
mediated collagen matrix remodeling, we studied the
cell signaling pathways of MC that participate in the

regulation of α 1 β 1 integrin-mediated collagen gel
contraction. In this study, we found that activation of
ERK is critical for the α 1β1 integrin-dependent MC
migration needed for collagen matrix reorganization
(Fig. 2, 3)(70). Furthermore, we found that PDGF-BB,
a representative fibrogenic growth factor in GN, en-
hances α1β1 integrin-mediated collagen matrix reor-
ganization through synergistic activation of the ERK/
AP-1 pathway that is crucial for MC migration (71).
Recently, Zent et al. found that reactive oxygen species
(ROS) stimulate MC-induced collagen matrix reor-
ganization accompanied by the tyrosine phosphoryla-
tion of several proteins, among which FAK is promi-
nent (72). Interestingly, as demonstrated using FAK-
deficient and FAK-reconstituted fibroblasts, FAK posi-
tively contributes to ERK activity required for PDGF-
BB-stimulated migration of smoothmuscle cells (73).

A growing body of evidences suggests that FN as-
sembly is regulated by α5β1 integrin-mediated sig-
naling (39). Interaction of FN with α5β1 integrin re-
sults in the activation of FAK, which then binds to the
signaling proteins Src and PI-3K (74, 75). The asso-

Figure. 2. The effect of ERK 1/2-specific antisense oligodeoxy-nucleotides (ODNs) on ERK 1/2 protein and collagen gel
contraction by MCs (A, B). A. MCs were pretreated with the indicated concentrations (1,5 uM) of antisense ODNs (AS) or
with control sense (S)(5uM) or without (vehicle control). Total cell lysates (10 ug) isolated from 4h collagen gel cultures
were subjected to Western blot analysis for ERK 1/2 protein with anti-total ERK 1/2 antibody. B. MCs were subjected to 24h
collagen gel contraction after exposure to AS (5uM), S (5uM) or without (vehicle control). The degree of gel contraction by
MCs was compared with that by untreated, vehicle control cells (Control) (*P<0.01 versus control ).
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ciation of Src with FAK is believed to be important for
the reciprocal activation of those two kinases. Indeed,
it has been reported that FAK-null cells showadramati-
cally reduced ability to assemble FNmatrix, although
their ability to attach to immobilized FN is only slightly
impaired (76). Subsequently, Wierzbicka-Patynowski
et al . showed using two different cell systems that the
inhibition of Src bymutation of Src family kinase genes
in SYF cells or with Src-specific inhibitors in CHOα5
cells significantly reduces FN matrix assembly (39).
A further reduction in matrix assembly was seen with
the concomitant inhibition of PI3-kinase activity. There-
fore, they proposed that a subset of signalingmolecules
(Src, PI-3K) activated by FAK are essential for the
proper initiation of FN matrix assembly. Analogous
studies need to be performed for MCs to elucidate
how MC-α5β1 integrin may regulate FN assembly
through an intracellular signaling pathway.

Integrin-linked kinase (ILK) is a cytoplasmic protein
serine/threonine kinase that was identified based on
its interaction with the β1 integrin cytoplasmic domain
(77). It is capable of interacting with several compo-

nents of cell-matrix contact sites, including integrins
(β1, β3 integrins), LIM protein PINCH, calponin
homology domain-containing ILK binding protein CH-
ILKBP, affixin, and paxillin (78). The PINCH-and CH-
ILKBP-binding sites have beenmapped to two separate
domains (the N-and C-terminal domains, respectively)
of ILK (79). Guo and Wu showed that ILK forms a
tertiary complex with PINCH and CH-ILKBP in rat
mesangial cells, which are co-clustered at fibrillar ad-
hesions sites that are involved in FNmatrix deposition
(79). They demonstrated that the inhibition of PINCH-
ILK-CH-ILKBP complex formation significantly reduced
FN matrix deposition and inhibited cell proliferation,
suggesting that the PINCH-ILK-CH-ILKBP complex
is critically involved in the regulation of mesangial
FN matrix deposition and cell proliferation in GN.
Since glomerular mesangial ILK expression has been
demonstrated to be increased in the expanded me-
sangium in patients with diabetic nephropathy and
the ILK expression in MCs can be increased by hy-
perglycemia (80), the PINCH-ILK-CH-ILKBP complex
may be a useful target in the therapeutic control of

Figure. 3. The effect of ERK 1/2-specific antisense oligodeoxy-nucleotides (ODNs) on α1β1 integrin-dependent MC adhesion and
migration to collagen type I. A. MCs pretreated with either antisense ODNs (AS)(5uM) or with control sense (S)(5uM) or without
(vehicle control) were subjected to adhesion and migration assays. B. In parallel to the MC adhesion assay, cell lysates (10ug)
prepared from MC cultures treated with either AS, S or none (vehicle control) for 50 min were subjected to Western blot analysis
with the anti-total ERK 1/2 antibody or anti-phospho-specific ERK 1/2 antibody.
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pathological processes involving abnormal cell prolif-
eration and FN matrix deposition. Recently, we found
that mesangial ILK expression and activity areupregu-
lated in an experimental ratmodel of progressive GN,
suggesting that ILK contributes to the progression
of chronic GN (81).

While earlymesangial injury is often associated with
mesangial hypercellularity, advanced glomerulosclerosis
is characterized by the massive accumulation of me-
sangial ECM and mesangial hypocellularity which
appears to be irreversible even when the initial disease
process subsides. Although the mechanisms of me-
sangial hypocellularity in glomerulosclerosis are not
fully understood, several studies have suggested that
the apoptosis of MCs is involved in the development
of hypocellular lesions (82). Apoptosis is a regulated
form of cell death that is crucial for maintaining an
appropriate number of cells in tissue organization, as
well as undesirable loss of cells in scar formation (82).
Sugiyama et al. showed that in glomerulosclerosis there
is an increase inMC apoptosis (83). Subsequently, they
reported using β1 integrin antisense oligonucleotides
that β1 integrin-mediated MC-ECM interaction regu-
lates MC apoptosis (survival)(84).Moreover,Mooney

et al. found in rat cultured MCs that the normal me-
sangial matrix proteins COLⅣand LMpromoteMC
survival by inhibiting apoptosis, via a β1 integrin-
dependent but RDG (Arg-Gly-Glu) ligation-independent
mechanism (85). In contrast, COL I, which is not ex-
pressed in normal glomeruli but overexpressed in
sclerosing glomeruli, did not promote MC survival.
Several mechanisms have been proposed to account
for the β1 integrin-mediated suppression of apoptosis,
including the upregulation of Bcl-2 expression, sup-
pression of the proapoptotic enzyme IL-1β converting
enzyme, and activation ofMAP kinase and PI-3 K (86-
88). Taken together, β1 integrins-mediated signaling
pathways may regulate MC behaviors, such as cell mi-
gration, proliferation, ECMbuild-up ability and survival
(apoptosis) in glomerular injury (Fig. 4). The same sig-
naling molecules, such as FAK, ERK, PI-3K, are used
to produce integrin-dependent, distinctMC phenotypes.
Since many of these signaling pathways appear to in-
teract, muchmore work is needed for identify the criti-
cal steps (molecules) that determine any specific β1
integrins-mediated MC phenotype.

Figure. 4. Integrin control of mesangial cell behaviors. Cooperative activation of signaling molecules by β1-integrins and solublemediator
recepters control gene expression required for cell migration, proliferation, apoptosis and extracellular matrix (ECM) assembly.
Pax, paxillin ; Tal, talin ; Vin, vinculin ; FAX, focal adhesion kinase ; PI-3 K, phosphatidylinositol-3 kinase ; ERK, extracellular-signal-
regulated kinase ; ILK, integrin-linked kinase ; PINCH, particularly interesting new cystein-histidine rich protein ; CH-ILKBP, calponin
homology domain-containing ILK-binding protein.
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CONCLUSION

The appropriate interaction between glomerular
cells and ECM components is essential for maintain-
ing the normal glomerular structure and function.
Thus, disturbance in normal cell-ECM interactionsmay
greatly influence the glomerular pathology in GN and
the actual biology of glomerular cells, and determine
the fate whether glomerular injury will progress or sub-
side. The critical molecules controlling the glomeru-
lar cells-ECM interaction are the β1 integrins. β1 in-
tegrins are essential for glomerular cell adhesion and
induce signals for migration, proliferation, survival and
ECM assembly in close association with receptor sig-
nalings for soluble mediator molecules. To ascertain
the cause of cell proliferation and abnormal ECM ac-
cumulation in nephritic glomeruli and the glomerular
alteration of constituents in progressive GN, many
researchers have been studied the regulation of gene
expression for cell proliferatiom andECMcomponents
induced by soluble regulatorymolecules that act through
a paracrine and/or autocrinemechanisms. To elucidate
the cause of glomerulosclerosis and its pathophysiology,
it is obiously needed to clarify the mechanism of re-
modeling to normal tissue in some cases, and the con-
struction of irreversible sclerotic lesions in other cases,
under the direct, three-dimensional interaction between
glomerular cells and insoluble ECM components after
glomerular injury. Clearly, analysis of β1 integrins-
mediated signaling pathways and subsequent tran-
scriptional regulations in these glomerular alterations
is particularly important subject for future research.
Studies from this perspective might result in the de-
velopment of a new method of treatment for chronic,
progressive GN, for which there is no conclusive treat-
ment at present.
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