
INTRODUCTION

Hereditary hemorrhagic telangiectasia (HHT) or
Osler-Weber-Rendu (OWR) disease is an autosomal
dominant disorder characterized by vascular dysplasia
and hemorrhage (1, 2). Recent progress in eluci-
dation of the pathogenesis of HHT has led to the

identification of disease loci on chromosome 9q
(designated OWR1) and 12q (OWR2), and at least
one other HHT locus has been predicted (3) (Table 1).
McAllister et al. explored candidate genes linked
to the OWR1 locus and investigated the endoglin gene,
which encodes a type III TGF-β receptor. In three
unrelated families with HHT, they successfully
identified three different mutations (4). With regard
to OWR2, a second locus for HHT, Johnson et al.
have shown that the activin receptor-like kinase 1
gene (ALK1), which is also a type I TGF-β recep-
tor family protein, was included in OWR2, and they
identified three different missense mutations in the
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coding sequence of the ALK1 gene in three unrelated
families with HHT (5). In addition, mutations of
tyrosine kinase with Ig and EGF homology (TIE) 2
have been discovered in families with congenital
venous malformation (6). However, the molecular
mechanisms, including signal transduction pathways
inside the cells, for the development of aberrant vas-
cular formation (angiogenesis) by these gene ab-
normalities remain to be identified.

The present study reports recent growing evi-
dence for the pathophysiological roles of endoglin
and ALK-1 in the development of HHT.

Hereditary hemorrhagic telangiectasia (HHT)

HHT generally shows a triad representing di-
verse vascular abnormalities in the nose, skin, lung,
brain, and gastrointestinal tract ; repeated bleeding
from the above regions ; and an autosomal domi-
nant inheritance. The prevalence of the disease is
reported to be from 1/2,351 to 2/100,000 (1), and
the penetrance is age-dependent, being almost com-
plete by the age of 40 years (7-10). Arteriovenous mal-
formations in the lung, brain, and liver are frequently
observed in HHT patients. In the lung, pulmonary
arteriovenous malformations (PAVMs) are a com-
mon finding, occurring in approximately 20% of
HHT patients and giving rise to dyspnea, cyanosis,
polycythemia, hemoptysis, and hemothorax (11-14).
It has also been reported that a diagnosis of HHT
is plausible in 60% of patients with manifestating
PAVMs. In the brain, cerebral arteriovenous mal-
formations (CAVMs) are complicated in 0.6-5% of
patients with HHT (1, 9). This heterogeneity has
been explained, in part, by the identification of two
distinct genes, as described above. Recent advances
in diagnostic technologies using high-resolution
helical CT scanning, MR imaging, or angiography
should enable HHT to be diagnosed more accurate-
ly and at an earlier stage, and this would mean that
the prevalence of the disease would become higher
than the findings reported so far.

Histologically, arterioles in the papillary dermis in
normal skin are connected to post-capillary venules

through multiple capillaries. These vessels arise from
larger arteioles and venules at the junction of the
dermis and fat. Pathologically, during the earliest
stage of the disease a single post-capillary venule
becomes dilated, and during a more developed stage
the post-capillary venules and those branches become
markedly dilated and convoluted (1). Vascular walls
of dilated post-capillary venules lack elastic fibers
and have excessive layers of smooth muscle cells.
Finally, during the fully developed stage the dilated
post-capillary venules often connect directly to dilated
arterioles (arteriovenous shunt).

Genetic analysis of HHT

With regard to the genes responsible for HHT,
Iannuzzi et al. performed genetic linkage analysis in
families with members affected by both von Willebrand
disease (vWD) and HHT using two RFLPs within
the vWF gene (12p12) ; however, this failed to dem-
onstrate a linkage between the HHT and vWF genes
(15-17). In 1994, McDonald et al. demonstrated that
the gene responsible for HHT was linked to 9q33-34
and this locus was designated OWR1 (18-22). Taking
advantage of these findings, McAllister et al. attempted
to search for the endoglin gene, a type III TGF-β re-
ceptor that is present in this locus, and they found
three different mutations in three unrelated families
among the 68 families with HHT that they analyzed
(4). In 1995, Johnson et al. and Vincent et al. both
showed that a second locus for HHT resides at 12q
(designated OWR2), and subsequent analysis of the
ALK-1 gene, which belongs to the type I TGF-β re-
ceptor family protein, revealed three differentmissense
mutations in three unrelated families with HHT
(23-25). At present, HHT is classified into two types
according to the responsible gene ; namely, HHT
type 1 for an abnormality of the endoglin gene and
HHT type 2 for an abnormality of the ALK-1 gene.
Furthermore, Piantanida et al. predicted the prese-
nce of HHT type 3, of which the responsible gene
is indepndent of linkage of 9q and 12q (3). Therefore,
HHT is thought to be a genetically and clinically
heterogeneous disorder.

Table 1. Summary of types, loci, and candidate genes for HHT

type locus name chromosome candidate gene

I OWR1 9q33-34 endoglin (type III TGF-β receptor)

II OWR2 12q ALK-1 (type I TGF-β receptor)

III not known but independent of linkage with 9q and 12q
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TGF-β superfamily and angiogenesis

The TGF-β superfamily consists of TGF-β isoforms
(β1, β2, β3, and β5), activins, and bone morphogenetic
proteins (BMPs), and possesses a variety of functions,
including embryogenesis, organogenesis, morphogenesis
of tissues like bone and cartilage, vasculogenesis,
wound repair and angiogenesis, hematopoiesis, and
immune regulation (26-28). TGF-β is secreted as an
inactive latent form from cells in vivo and binds to
smooth muscle cells or pericytes at vascular walls
(29). Activation of the latent form of TGF-β to the
active form takes place at urokinase-type plasminogen
activator receptors on endothelial cells. Plasmin gen-
erated by digestion of plasminogen with a plasminogen
activtor is prerequisite for this process (Fig. 1). The
mechanisms underlying physiological angiogenesis
are not yet fully understood. Nevertheless, it is thought
that quiescent endothelial cells of post-capillary
venules become mitogenic and chemotactic in re-
sponse to growth and chemotactic factors such as
VEGF that are produced in a condition of oxygen
depletion or by tumor cells, leading to the forma-
tion of a new three-dimensional tube.

TGF-β and activin A are reported to inhibit the
proliferation of endothelial cells and accelerate the
production of extracellular matrix from endothelial
cells. In addition, BMP-2 and BMP-7 suppress the
proliferation of smooth muscle cells. Through these
actions, the TGF-β superfamily is thought to modulate
the interaction of endothelial and smooth muscle
cells in the process of physiological and pathological
angiogenesis (30).

TGF-β signaling and Smad

Smad proteins play a critical role in transmitting
the TGF-β superfamily signals from the cell surface
to the nucleus. At present, eight kinds of Smad
proteins have been cloned, and they have been
subdivided into three classes according to differ-
ences in their functions : the receptor-regulated
Smads (R-Smads), the common Smads (Co-Smads),
and the inhibitory Smads (I-Smads) (31-33). R-Smads
have two conserved domains in their amino-and
carboxy-terminal regions, termed the MH (Mad
homology)1 and MH2 domains, respectively, and
are phosphorylated on a carboxy-terminal SSXS
motif by specific type I TGF-β receptors. Co-Smads
possess MH1 and MH2 domains but not an SSXS
motif. I-Smads have an MH2 domain, although align-
ment of amino acid residues in the MH1 domain is
not as conserved as that in other species and an
SSXS motif is not present. Type I receptors for both
TGF-β and activin activate R-Smads such as Smad2
and Smad3, whereas ALK 1 and type I receptors for
BMP (ALK2, 3, and 6) activate other R-Smads, in-
cluding Smad1, Smad5, and Smad8. A basic pocket
that is present in R-Smads is important for the
interaction with activated type I receptors. Since this
basic pocket is not found in Co-Smads (Smad4), it
is possible to explain the observation that Smad4
does not associate with activated type I receptors.
I-Smads contain Smad6 and Smad7, and they are
believed to inhibit the activation of R-Smads by
binding to type I receptors activated by type II re-
ceptors. Smad7 can inhibit the signals of TGF-β,
activin, and BMP, whereas Smad6 strongly sup-

Fig.1. Process of normal angiogenesis (modified from ref. 52). Angiopoietin 1 produced by mesenchymal cells binds to TIE2 recep-
tors on endothelial cells, whereby the secretion of migratory and growth factors such as PDGF or HB-EGF from endothelial cells
are elicited, leading to the recruitment of mesenchymal cells to the place of angiogenesis. Attachment between endothelial cells and
mesenchymal cells causes the activation of TGF-β. Activated TGF-β differentiates mesenchymal cells into vascular smooth muscle
cells or pericytes, inhibits the growth of endothelial cells, and enhances the production of extracellular matrix.
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presses the signal of BMP and weakly suppresses
the signals of TGF-β and activin.

Once the receptors have been activated by the
TGF-β superfamily, R-Smads are phosphorylated and
dissociate from type I receptors, bind to Smad4,
and enter the nucleus. In the nucleus, heteromeric
complexes of Smads function as effectors of the
TGF-β superfamily signaling by regulating tran-
scriptions from specific gene promoters (33).

Endoglin and HHT type 1

Endoglin is a homodimeric membrane glycoprotein
with a molecular weight of 180 kDa and contains large
extracellular, one transmembrane, and short intracellular
regions (Fig. 2). Alignment of amino acid residues
in the transmembrane and intracellular regions is
highly conserved between endoglin and betaglycan,
another type III TGF-β receptor. Expression of endoglin
is restricted to endothelial cells, activated monocytes,
syncytiotrophoblasts, and some leukemic cells, with
the most prominent expression being in endothelial
cells (34-40). Three isoforms of TGF-β (β1, β2,
and β3) are produced in mammalian cells. Since
TGF-β 1 and -β 3, but not -β 2, bind to endoglin with
high affinity (Kd=50 pM) on human endothelial cells,
it has been suggested that endoglin presents TGF-β1
and -β3 efficiently to type-I and -II TGF-β receptors
that possess a serine/threonine kinase activity, leading
to the transduction of TGF-β signals into the cells.
However, Letamendia et al. have shown by tran-
sient transfection experiments that binding of TGF-β

to endoglin required the presence of type II TGF-β
receptors and that association of these molecules
led to a decreased TGF-β response to cellular growth
inhibition and plasminogen activator inhibitor-1
synthesis (41). Since this finding is entirely con-
trary to the present concept of TGF-β’s action, further
study is needed to define the precise function of
endoglin. Therefore, it is of importance to identify
the gene mutations in patients with HHT type 1 and
to analyze the alteration of TGF-β’s action using
mutant recombinant endoglin molecules.

Analysis of the endoglin gene in patients with HHT
type 1 has led to the detection of 29 different kinds
of mutations (Table 2) (42). Mutations disclosed
to date include 6 missenses, 6 nonsenses, 7 frameshifts,
5 gross deletions, and 5 splicing errors (42). It is most
likely that these mutant endoglin proteins are not
expressed on the endothelial cell surface or in re-
duced amounts. Alternatively, it is possible that these
mutant endoglin proteins act in a dominant nega-
tive fashion against normal endoglin proteins. With
regard to the latter possibility, Pece et al. transient-
ly expressed 5 different mutated forms of endoglin
in COS-1 cells and demonstrated that these mutant
endoglin proteins did not act as dominant negative
proteins (43).

We reported a missense mutation in the endoglin
gene in a Japanese family with HHT type 1 in which
Asp160 (GAT) is substituted for Ala160 (GCT) in the
extracellular domain of endoglin protein (44). Among
the mutant endoglin genes identified so far, this
mutation is one of only five missense mutations so

Fig. 2. Model of the interaction between endoglin
and TGF-β and the TGF-β signaling in endothelial cells.
TGF-β binds to the extracellular region of endoglin
directly or via interaction with type II receptor. Acti-
vation of type II receptor leads to the phosphorylation
of the serine/threonine kinase domain on type I
receptor, resulting in the transduction of TGF-β
signals inside the cells through Smad proteins
(asterisks indicate amino acid residue numbers
of mature endoglin).
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far reported (42), and it is expected that the level
of its expression on the cell surface membrane is
similar to that of normal endoglin proteins.We there-
fore analyzed the expression levels of this mutant
protein in COS-1 cells, and found that the expres-
sion levels of the mutant protein on the cells were
similar to those of normal protein (unpublished data).
These findings suggest that this mutant endoglin
molecule would be useful in terms of a structure and
function study of endoglin protein by analyzing
the change in intracellular signal transduction via
Smad2/3 or Smad1/5 using MCF-7 cells that pos-
sess TGF-β type I and II receptors but lack type III
receptor.

Recently, Shovlin et al . established cell lines from
patients’ peripheral lymphocytes using the Epstein-Barr
virus transformation method and evaluated changes
in the amount of endoglin transcripts in lympho-
cytes (45, 46). They found that a large deletion mu-

tation, extending from exons 9A to 14, produced
no endoglin transcripts in lymphocytes, while a non-
sense mutation in exon 4, by which a short trun-
cated endoglin may be synthesized, did not produce
a stable endoglin transcript in lymphocytes. These
findings indicated the possibility that a region ex-
tending from exons 4 to 9A contributes to the sta-
bility of endoglin transcript. Since all mutations that
reduce the stability or block the production of endoglin
mRNA can cause HHT type 1, a haplo-insufficiency
mechanism is proposed for the pathogenesis of
HHT.
More recently, Li et al . developed knockout mice

lacking endoglin and investigated vascular abnormal-
ities (47). They found that mice lacking endoglin died
from defective vascular development by gestational
day 11.5 and that they exhibited poor vascular smooth
muscle development and arrested endothelial re-
modeling. However, in contrast to mice lacking TGF-β,

Table 2. Mutations of the endoglin gene in patients with HHT type 1 (modified from ref. 42)

exon mutation consequence

1
2
2
4
4
7
4
5
7
8
10
8
9A
9A
11
11
11
11
2
5
7
8
9A

intron 3
intron 3
intron 4
intron 8

9B

missense

nonsense

frameshift

gross deletions

splicing errors

T2C
G155T
T157C
G447C
C479A
T917C
C511T
G587A
C831G
T1050A
C1414T
∆ CAGA1078-81
∆ G1206
∆ A1267
∆ AG143203
∆ TG1550-1
∆ GC1553-4
∆ C1655
∆ 152bp
∆ 21bp in exon 5
∆ 39bp in exon 7
∆ 15kb
∆ < 60kb
5’ IVS + 1 g to a
5’ IVS + 4 a to g
3’ IVS - 2a to g
5’ IVS + 1 g to a
G1311C

destroys start
G52V
C53R
W149C
A160N
L306P
R170X
W196X
Y277X
C350X
G472X
premature stop in exon 8
premature stop in exon 9A
premature stop in exon 11
premature stop in exon 11
premature stop in exon 11
premature stop in exon 11
prermature stop in exon 12
loss of exon 2, frameshift
loss of 7 amino acids in frame
loss of 13 amino acids in frame
loss of exon 8, frameshift
loss of exons 9A-1
exon 3 skip
exon 3 skip
disrupts 5’ splice site
exon 8 cryptic splice ∆ 24bp
disrupts 3’ splice site
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vasculogenesis was unaffected. Bourdeau et al . also
generated endoglin-deficient mice and found that
endoglin is critical for both angiogenesis and heart
valve formation (48). These findings clearly demon-
strated that endoglin was essential for angiogenesis
and that aberrant endoglin could elicit the pheno-
type of HHT type 1.

ALK1 and HHT type 2

At present, seven type I TGF-β receptors have
been identified and designated as ALK-1 to -7 (49).
ALK-1 is capable for binding to TGF-β1 or activins
in the presence of either type II TGF-β receptor or type
II activin receptor, respectively. ALK-1, like endoglin,
is exclusively expressed on endothelial cells. How-
ever, ALK-1 does not elicit a specific transcriptional
response, implying that ALK-1 may be an orphan
receptor (50, 51). Mutations of the ALK-1 gene in
human HHT type 2 patients suggest that ALK-1 may
play an important role during vascular development.
With regard to this issue, Oh et al. demonstrated
that a TGF-β1 signal can be mediated by two dis-
tinct type I TGF-β receptors, ALK-1 and ALK-5, and
that a balance between these two signaling path-
ways plays an important role in determining the proper-
ties of the endothelial cells during angiogenesis (49).

There have been 17 different mutations of the
ALK-1 gene so far identified in patients with HHT
type 2 (Table 3) (42). Amino acid residues encoded

by exon 3 are located in the extracellular region and
are extremely conserved among species, suggesting
that this domain is crucial for expressing the authen-
tic function of the ALK-1 protein. Therefore, missense
mutations in exon 3 are likely to disrupt the action
of ALK-1 protein. Mutations in exon 4 are either
nonsense or frameshift mutations. Since exons 6 to
9 encode the intracellular kinase domain, mutations
in these regions can decrease the kinase activity. In
sequencing analysis of reverse-transcribed cDNA from
peripheral lymphocytes of patients with missense and
frameshift mutations in exon 7, only wild-type cDNA
was detected, suggesting reduced transcriptional
efficacy or instability of mutant mRNA.

DISCUSSION

The most intriguing question is how gene abnor-
malities of endoglin and ALK-1 result in an identical
phenotype by a dominant inherited pattern. It was
reported that there was an approximately 100-fold
expression ratio of endoglin to type II TGF-β re-
ceptor on the surface of normal endothelial cells and
that both inhibition of cell proliferation and enhance-
ment of fibronectin production by TGF-β action were
not influenced by a 50% decrease in endoglin ex-
pression in vitro (43). However, since TGF-β functions
in a variety of aspects on angiogenesis, it is certain
that some of the responses participating in the pro-
cess of angiogenesis in patients with HHT are altered.

Table 3. Mutations of the ALK-1 gene in patients with HHT type 2 (modified from ref. 42)

exon mutation consequence

３
３
３
３
３
７
８
８
８
９
４
４
７
４
４
６
７

missense

nonsense

frameshift

G150T
G152A
G200A
C231G
A286G
G998T
G1120T
T1126G
G1232A
C1207A
G423A
G475T
C924A
∆ G400
∆ GGTG406-9
∆ TCC694-6
Ins. T865

W50C
C51Y
R67Q
C77W
N96D
S331 W
R374W
M376R
R411Q
P424T
W140X
E159X
C308X
premature stop in exon 4
premature stop in exon 4
deleted serine in frame
premature stop in exon 7
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During angiogenesis, endothelial cells are in either
the activation phase or resolution phase. Endothelial
cells during the activation phase degrade the perivascular
basement membrane, invade and migrate into the
extracellular space, proliferate, and form capillary
lumen. During the resolution phase, endothelial cells
cease these actions and reconstitute basement mem-
brane. Activation of ALK-1 and ALK-5 transforms
endothelial cells into the resolution phase and acti-
vation phase, respectively (49). In patients with HHT
type I, endoglin mutation disrupts both the ALK-1
and ALK-5 pathways, while only the ALK-1 pathway
is disrupted in patients with HHT type 2 (Fig. 3).
Therefore, the ALK-5 pathway becomes dominant
in patients with HHT type 2, which would lead to an
increase in endothelial cells during the activation
phase and result in arteriovenous connections be-
tween dilated venules and arteriols. However, in
patients with HHT type 1 a significant decrease in
the TGF-β concentration by endoglin mutation
blocks signaling through both ALK-1 and ALK-5.
Therefore, if the ALK-5 pathway is not affected due
to its higher sensitivity to TGF-β action than that
of the ALK-1 pathway, it may be possible to explain
why an identical phenotype elicited by mutations of
these two genes by a dominant inherited pattern.

Even in knockout mice of the endoglin gene, a

haplo-insufficiency mechanism for the pathogenesis
of HHT has been confirmed (48). Indeed, when
129/Ola End+/- mice were analyzed, clinical signs
such as nosebleeds and telangiectases on the ears
were observed in half of the mice over 3-9 months.
The absence of clinical signs in the remaining half
of 129/Ola End +/- mice and variation in age of onset
resembled the human disease, suggesting that
epigenetic factors such as environment, blood pres-
sure, oxygenation, shear forces, and hormonal levels
must influence clinical signs. Therefore, 129/Ola
End +/- mice will be useful for clarifying the molecular
pathogenesis of HHT.

CONCLUSION

At present, it is not easy to differentially diag-
nose the type of HHT accurately on the basis of clini-
cal signs, laboratory findings, or inheritance patterns.
However, findings obtained from analysis of the
genes in endoglin and ALK-1 and from examination
of the functional differences between wild and mu-
tant proteins via activated Smads should enable
precise differential diagnosis and typing of HHT.
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