Abstract: To clarify the pathophysiological role of cathepsins in rheumatoid arthritis (RA), we investigated whether cathepsin B or cathepsin L was increased in synovial fluid (SF) of RA joints, and whether the cathepsin isolated from SF of RA patients activated pro-urokinase or not. Thus, we estimated the content of cathepsins in SF of RA patients by measuring their activities by fluorospectrometry, using Z-Phe-Arg-MCA as the substrate. Cathepsin activity was approximately 4-fold higher in the SF of RA patients than in those of patients with osteoarthritis. Cathepsin B and cathepsin L were separated by cation-exchange column chromatography. As a result, a large peak corresponding to cathepsin B and a very small peak corresponding to cathepsin L were detected.

Biochemical sequential fractionation of the cathepsin purified from the SF showed that the large peak was mainly composed of cathepsin B. This purified enzyme induced conversion of pro-urokinase to urokinase, and the Km for pro-urokinase was approximately 8.27 µM.

These findings indicated that an imbalance between cathepsin B and its inhibitors occurred due to increased concentrations of active cathepsin B in RA articular lesions, and that cathepsin B might be related to the degradation of cartilage in RA by activating the fibrinolytic cascade. J. Med. Invest. 47 : 61-75, 2000

Keywords: synovial fluid, cysteine protease, cathepsin B, rheumatoid arthritis, pro-urokinase
Patients characteristics

Synovial fluid

Reagents
Partial purification of cysteine proteases from synovial fluid

The Journal of Medical Investigation Vol. 47 2000

Assay of protease activity

Partial purification of cysteine proteases from synovial fluid

The Journal of Medical Investigation Vol. 47 2000
Biochemical characterization of the purified enzyme

The purified enzyme was subjected to biochemical characterization. The enzyme was assayed for its ability to degrade several substrates, and the results showed that it had high specificity for certain peptides. The enzyme was also shown to have a broad pH range, with optimal activity at pH 7.5.

Assay of protein

The purity of the enzyme was determined by SDS-PAGE and Western blotting. The enzyme was found to be homogenous, with a single band corresponding to the expected molecular weight.

Statistical analysis

The results of the biochemical characterization were statistically analyzed using one-way ANOVA. The significance of the differences was determined using the Tukey-Kramer multiple comparison test.
The Journal of Medical Investigation Vol. 47 2000

![Cytokine activity graph]

Table 1:

<table>
<thead>
<tr>
<th>Cytokine</th>
<th>RA (mU/ml)</th>
<th>OA (mU/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-1β</td>
<td>3.4 ± 0.7</td>
<td>2.8 ± 0.5</td>
</tr>
<tr>
<td>TNF-α</td>
<td>4.2 ± 0.8</td>
<td>3.6 ± 0.7</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>1.8 ± 0.6</td>
<td>1.5 ± 0.4</td>
</tr>
</tbody>
</table>

p < 0.05
Y. Ikeda et al. Cathepsins in synovial fluids
The Journal of Medical Investigation Vol. 47 2000

The image contains a graph with the following axes:

- **X-axis**: Tube number
- **Y-axis 1**: Protein concentration (Absorbance at 280 nm)
- **Y-axis 2**: Concentration of KCl (M)

The graph shows a relationship between the protein concentration and the concentration of KCl. The graph includes data points and a trendline.

Graph Description

- **X-axis (Tube number)**: The number of tubes tested.
- **Y-axis 1 (Protein concentration)**: Measured in mU/ml.
- **Y-axis 2 (Concentration of KCl)**: Measured in M.

The graph illustrates the effect of increasing KCl concentration on protein concentration. As the KCl concentration increases, the protein concentration decreases, indicating a potential inhibition or denaturation effect.
Y. Ikeda et al.

Cathepsins in synovial fluids

![Graph showing cathepsins activity and protein concentration](image)

Figure 1: Distribution of cathepsins activity and protein concentration in synovial fluid samples. The graph depicts the relationship between tube number and cathepsins activity (mU/ml) and protein concentration (Absorbance at 280 nm) across various KCl concentrations (M).
<table>
<thead>
<tr>
<th>Disease</th>
<th>Etiology</th>
<th>Pathogenesis</th>
<th>Symptoms</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute</td>
<td>Viral</td>
<td>Direct invasion of virus</td>
<td>Fever, cough, sore throat</td>
<td>Laboratory test</td>
</tr>
<tr>
<td>Chronic</td>
<td>Bacterial</td>
<td>Bacterial infection</td>
<td>Fever, cough, fatigue</td>
<td>Clinical diagnosis</td>
</tr>
</tbody>
</table>

The Journal of Medical Investigation Vol. 47 2000
Incubation time (min)

Table: Urokinase activity vs. Incubation time

<table>
<thead>
<tr>
<th>Incubation Time (min)</th>
<th>0</th>
<th>30</th>
<th>60</th>
<th>90</th>
<th>120</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urokinase activity</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Figure: Urokinase activity vs. Incubation time

Y. Ikeda et al. Cathepsins in synovial fluids
Isolation of cathepsins from synovial fluids

Isolation of cathepsins from synovial fluids is crucial for understanding the role of these enzymes in the pathogenesis of various joint diseases. Cathepsins are a family of lysosomal proteases that play a significant role in the degradation of extracellular matrix proteins and are implicated in the development of osteoarthritis.

A method for the isolation of cathepsins from synovial fluids has been developed and validated. This method involves the extraction of synovial fluid followed by digestion with papain. The digested samples are then subjected to size exclusion chromatography to separate different cathepsins. The isolated cathepsins are further characterized by electrophoresis and mass spectrometry.

The isolated cathepsins are then characterized for their enzymatic activity and substrate specificity. This information is crucial for understanding the role of these enzymes in the degradation of extracellular matrix proteins. The results of this study provide new insights into the role of cathepsins in the pathogenesis of joint diseases and may have implications for the development of new therapeutic strategies.
Activation of pro-urokinase by purified enzyme

Y. Ikeda et al. Cathepsins in synovial fluids